Система слідкування за швидкістю задаючого валу

Інформація про навчальний заклад

ВУЗ:
Національний університет Львівська політехніка
Інститут:
Інститут комп'ютерних технологій
Факультет:
Не вказано
Кафедра:
Автоматики

Інформація про роботу

Рік:
2006
Тип роботи:
Курсова робота
Предмет:
Теорія автоматичного керування
Група:
КС-41

Частина тексту файла (без зображень, графіків і формул):

Міністерство освіти і науки України Львівський Національний університет "Львівська політехніка" Інститут комп'ютерних технологій та автоматики каф. Автоматики Курсова робота з курсу: "Теорія автоматичного керування" на тему №4: "Система слідкування за швидкістю задаючого валу" Варіант 9 Зміст Завдання.............................................................................................................................................3 Опис призначення і принцип роботи схеми...................................................................................4 Структурна схема системи...............................................................................................................4 Вирази коефіцієнтів передачі окремих ланок, а також розімкненої і замкненої системи...............................................................................................................................................4 Статичні характеристики ланок системи........................................................................................6 Вирази диференціальних рівнянь для окремих ланок системи....................................................7 Рішення диференціальних рівнянь для ланок системи.................................................................7 Перехідні характеристики ланок системи......................................................................................9 Вирази для диференціальних рівнянь розімкненої і замкненої системи...................................10 Схеми електронного моделювання окремих ланок і замкненої системи..................................11 Стійкість системи і граничний коефіцієнт підсилення...............................................................12 Вирази передаточних функцій для окремих ланок системи, розімкненої і замкненої системи.................................................................................................................................13 Вирази для комплексних коефіцієнтів передачі окремих ланок системи, розімкненої і замкненої системи...............................................................................................................14 АФЧХ, АЧХ, ФЧХ, ЛАЧХ і ЛФЧХ окремих ланок системи, асимптотичні ЛАЧХ і ЛФЧХ розімкненої системи............................................................................................................16 Стійкість розімкненої системи по АФХ розімкненої системи. Запаси стійкості по амплітуді і фазі...............................................................................................................19 Стійкість розімкненої системи по ЛАЧХ і ФЧХ розімкненої системи. Запаси стійкості по амплітуді і фазі...............................................................................................................21 Графік перехідного процесу при одиничній стрибкоподібній дії вхідної величини...............................................................................21 Якісні показники системи..............................................................................................................22 Завдання 1.Описати призначення і принцип роботи схеми. 2.Зобразити структурну схему системи. 3.Записати вирази коефіцієнтів передачі окремих ланок, розімкненої і замкнутої системи. 4.Зобразити статичні характеристики окремих ланок системи. 5.Записати вирази диференціальних рівнянь для окремих ланок системи. 6.Знайти рішення диференціальних рівнянь для окремих ланок системи. 7.За результатами рішень диференціальних рівнянь побудувати перехідні характеристики окремих ланок системи. 8.Записати вирази диференціальних рівнянь розімкненої і замкнутої системи. 9.Привести схеми електронного моделювання окремих ланок і замкненої системи. 10.Користуючись одним з алгебраїчних критеріїв стійкості визначити стійкість системи і знайти граничний коефіцієнт підсилення. 11.Записати вирази передаточних функцій для окремих ланок системи. 12.Записати вирази передаточних функцій розімкненої і замкнутої системи. 13.Записати вирази для комплексних коефіцієнтів передачі окремих ланок системи, розімкненої і замкнутої системи. 14.Розрахувати аналітично і побудувати АФХ, ЛАЧХ і ФЧХ окремих ланок системи і розімкненої системи. 15.По АФХ розімкненої системи визначити стійкість системи. Знайти запаси стійкості по амплітуді і фазі. 16.По ЛАЧХ і ФАХ розімкненої системи визначити стійкість системи і знайти запаси стійкості по амплітуді і фазі. 17.Побудувати графік перехідного процесу при одиничній стрибкоподібній дії вхідної величини. 18.По графіку перехідного процесу визначити якісні показники системи.  Рис.1.Схема системи Рівняння ланок системи: а) рівняння тахогенератора  (Зв.1) б)вимірювальна схема  (Зв.2) в)електронний підсилювач  (Зв.3 г)електромашинний підсилювач  (Зв.4)  (Зв.5) д)двигун  (Зв.6)  (Зв.7) Вихідні дані:          c c с рад/(В*с)   В*с/рад В*с/рад  0,004 0,02 0,4 2 20 2 1,01 1   Опис роботи системи Система статичного слідкування за швидкістю задаючого вала успішно використовується в системах автоматичного керування. Схема працює за принципом слікдуючого, зрівноваженого статичного перетворення. Вимірювальна схема побудована на принципі порівняння напруг, що подаються з виходів тахогенераторів (U1 і U2). Схема охоплена від’ємним зворотнім зв’язком. Кутова швидкість задаючого вала за допомогою тахогенератора перетворюється в напругу U1 , що подається на вхід електронного підсилювача (ЕП). Напруга з виходу електронного підсилювача, підсилена в К разів, подається на обмотку збудження електро - машинного підсилювача, з виходу якого знімається робоча напруга, що живить двигун, вал якого обертається із швидкістю . Ця швидкість за допомогою другого тактового генератор перетворюється в напругу і поступає на схему порівняння. Другий тахогенератор забезпечує у досліджуваній схемі зворотній зв’язок. Структурна схема системи  Рис.2. Структурна схема системи Де: ТГ1,ТГ2 – тахогенератори, ЕП – електронний підсилювач, ЕМП - електромашинний підсилювач, ДВ – двигун. Коефіцієнти передачі окремих ланок, а також розімкненої і замкненої системи Коефіцієнтом передачі називається відношення вихідної величини до вхідної в усталеному режимі, тобто коли всі часові похідні дорівнюють нулю. Для тахогенератора ТГ1 коефіцієнт передачі 1,01 В*с/рад. Для електронного підсилювача =2. Для електромашинного підсилювача 20. Для двигуна 2 рад/(В*с). Для тахогенератора ТГ2 1 В*с/рад. Для розімкненої системи Розімкнена система – система, в якій відсутній контроль за регульованою (вихідною) величиною, в даному випадку для розімкненої системи .  Рис.3.1 Розімкнена система. Коефіцієнт передачі є добутком коефіцієнтів передачі ланок ТГ1, ЕП, ЕМП, ДВ, оскільки вони включені послідовно. Отже 1,01*2*20*2=80,8. Для замкненої системи. Замкнена система – система, в якій відбувається постійний контроль за регульованою (вихідною) величиною.  Рис.3.2. Замкнена система Коефіцієнт передачі є добутком коефіцієнта передачі ланки ТГ1 та коефіцієнта передачі ланок ЕП, ЕМП, ДВ з врахуванням охоплення їх від’ємним оберненим зв’язком: . Статичні характеристики ланок системи      Рис.4.1.Тахогенератор ТГ1 Рис.4.2.Електронний підсилювач ЕП       Рис.4.3.Електромашинний підсилювач ЕМП Рис.4.4.Двигун   Рис.4.5.Тахогенератор ТГ2 Вирази диференціальних рівнянь для окремих ланок системи. В даній системі тахогенератори та електронний підсилювач є безінерційними елементами, тому вони описуються алгебраїчними рівняннями. Електромашинний підсилювач і двигун описуються диференціальними рівняннями. Диференціальне рівняння електромашинного підсилювача:  , , , підставивши ці значення отримаємо рівняння :  (5.1) Диференціальне рівняння двигуна:  , підставивши числові значення отримаємо рівняння: . (5.2) Розв'язок диференціальних рівнянь для ланок системи Розв’язок неоднорідного диференціального рівняння є сумою повного розв’язку однорідного диференціального рівняння (вільна складова) і часткового розв’язку неоднорідного диференціального рівняння (усталений режим). Електромашинний підсилювач. З рівняння (5.1) однорідне диференціальне рівняння: . При розв’язку однорідного диференціального рівняння шукана функція замінюється виразом  і нехай , де  - змінна інтегрування, p – стала, тоді , , скоротивши на отримаємо характеристичне рівняння:  Маючи p можна знайти розв’язок розв’язку однорідного рівняння. Розв’яжемо квадратне рівняння:  , тоді  , , отже , де  - деякі сталі. З рівняння (5.1) частковий розв’язок неоднорідного рівняння . Отже . При подачі на вхід одиничної стрибкоподібної функції розв’язок записується як . Перша похідна . Тоді при нульових незалежних початкових умовах:   Розв’язуючи систему рівнянь отримаємо: . Таким чином при одиничній стрибкоподібній функції на вході ланка описується виразом: . Двигун. З рівняння (5.2) однорідне диференціальне рівняння: , нехай , тоді , скоротивши на отримаємо: , звідки . Отже, , де  - стала. З рівняння (5.2) частковий розв’язок однорідного рівняння . Отже: . При подачі на вхід одиничної стрибкоподібної функції: . Тоді при нульових незалежних початкових умовах: , звідки . Таким чином при одиничній стрибкоподібній функції на вході ланка описується виразом: . Перехідні характеристики ланок системи Оскільки тахогенератори та електронний підсилювач є безінерційними, тому їх перехідні характеристики є стрибкоподібною функцію, їхня вихідні величини повторюють сигнали на вході, з врахуванням коефіцієнта передачі відповідної ланки вони матимуть вигляд функції Хевісайда. Перехідна характеристика для ЕМП:  t Up(t)  0 0  0,1 3,613318361  0,2 7,232577283  0,3 10,05668439  0,4 12,25613777  0,5 13,96907403  0,6 15,30311013  0,7 16,34205849  0,8 17,15119229  0,9 17,78134632  1 18,27211078  1,1 18,65431852  1,2 18,95198221  1,3 19,18380293  1,4 19,36434508  1,5 19,50495145  1,6 19,6144558  1,7 19,69973788  1,8 19,76615562  1,9 19,81788182  2 19,85816622  2,1 19,88953974  2,2 19,91397346  2,3 19,93300246  2,4 19,94782227  2,5 19,95936394   Перехідна характеристика для двигуна:  t Wвих(е)  0 0  0,001 0,307042193  0,002 0,566946933  0,003 0,786950811  0,004 0,973179453  0,005 1,130818069  0,006 1,264255833  0,007 1,377208084  0,008 1,472819782  0,009 1,553753067  0,01 1,622261386  0,011 1,680252232  0,012 1,72934026  0,013 1,77089224  0,014 1,806065115  0,015 1,835838211  0,016 1,861040509  0,017 1,882373722  0,018 1,900431838  0,019 1,915717651  0,02 1,92865677  0,021 1,939609461  0,022 1,948880682  0,023 1,956728576  0,024 1,963371653  0,025 1,968994877   Вирази диференціальних рівнянь розімкненої і замкненої системи Замкнена система. З рівняння (Зв.7) , це співвідношення підставляємо в (Зв.5) з врахуванням(Зв.3):  , (8.1) підставивши в (8.1) (Зв.1) і (Зв.2), отримаємо рівняння замкненої системи:   , або (8.2)  . (8.3) Тоді рівняння матиме вигляд:  (8.4) Підставимо числові значення :  , ,  ,  , . Розімкнена система. Для розімкненої системи рівняння (Зв.2) матиме вигляд: , тоді аналогічно до замкненої системи рівняння розімкненої системи:  . (8.6)   (8.7) З врахуванням числових значень аналогічно до замкненої системи (крім коефіцієнта , який дорівнює 1). Тоді рівняння запишеться : . (8.8) Cхеми електронного моделювання окремих ланок і замкненої системи Електронне моделювання ланок і систем здійснюється при певній комбінації включення типових ланок САУ. Безінерційні елементи системи (тахогенератори, електронний підсилювач) моделюються за допомогою безінерційних ланок з відповідними коефіцієнтами передачі. Модуль коефіцієнта передачі безінерційної ланки дорівнює відношенню опору в колі оберненого зв’язку до опору резистора вхідного кола.   Рис.9.1.Схема електронного моделювання Рис.9.2. Схема електронного моделювання тахогенератора ТГ1 електронного підсилювача  Рис.9.3. Схема електронного моделювання тахогенератора ТГ2 Двигун, що описується рівнянням першого порядку, моделюється за допомогою аперіодичної ланки, яка описується рівнянням . Де .  Рис.9.4.Схема електронного моделювання двигуна Електромашинний підсилювач описується рівнянням другого порядку. Його моделювання здійснюється за допомогою двох послідовно сполучених аперіодичних ланок. В цьому можна переконатися, дослідивши їх рівняння:  (9.1) , , (9.2) підставивши рівняння (9.2) в (9.1) отримаємо: . (9.3) Якщо прийняти , ,  то отримаємо рівняння електромашинного підсилювача (Зв.5).  Рис.9.5.Схема електронного моделювання електромашинного підсилювача Схему порівняння можна промоделювати за допомогою підсумовуючої безінерційної ланки при умові, що сигнали на нього подаються у протилежних фазах.  Рис.9.6.Схема електронного моделювання замкненої системи Стійкість системи і знаходження граничного коефіцієнта підсилення Характеристичний поліном розімкненої системи:  Перепишемо рівняння (10.1) у вигляді: , де  , ,  ,  , , За Гурвіцом, для того щоб лінійна система автоматичного керування була стійкою необхідно і достатньо, щоб головний визначник Гурвіца і всі діагональні мінори були більшими від нуля.   Отже, можна зробити висновок що розімкнена система є стійкою. Знайдемо граничний коефіцієнт підсилення. Граничний коефіцієнт підсилення визначимо з умови , де . Звідки маємо: . Таким чином граничний коефіцієнт підсилення при якому система залишається на межі стійкості рівний 128,26. Вирази передаточних функцій для окремих ланок системи Передаточною функцією називається відношення зображення за Лапласом вихідної величини до зображення за Лапласом вхідної величини при нульових початкових умовах. Передаточна функція тахогенератора ТГ1 згідно з (10.1) . (11.1) Передаточна функція електронного підсилювача згідно з (10.2) . (11.2) Передаточна функція електромашинного підсилювача згідно з (10.3) . (11.3) Передаточна функція двигуна: згідно з (10.4): . (11.4) Передаточна функція тахогенератора ТГ2: . (11.5) Вирази передаточних функцій розімкненої і замкненої системи Розімкнена система. Передаточна функція розімкненої системи за (10.5): . (12.1) Замкнена система. Передаточна функція замкненої системи дорівнює добутку передаточних функцій тахогенератора ТГ1 та ланки еквівалентної ланкам електронного підсилювача, електромашинного підсилювача, двигуна, що охоплені від’ємним оберненим зв’язком: . (12.2) Підставимо вирази згідно з (11.1)-(11.5):  . (12.3) Вирази для комплексних коефіцієнтів передачі окремих ланок системи, розімкненої і замкненої системи Уявна частина коефіцієнтів передачі присутня лише в інерційних ланках, комплексні коефіцієнти передачі безінерційних ланок дорівнюють їх статичним коефіцієнтам передачі згідно з п.3: Для тахогенератора ТГ1 коефіцієнт передачі 1,01 В*с/рад. (13.1) Для електронного підсилювача =2. (13.2) Для тахогенератора ТГ2 1 В*с/рад. (13.3) Для решти ланок комплексні коефіцієнти передачі знаходяться з виразів передаточних функцій (п.11,12) шляхом заміни оператора Лапласа на . Для електромашинного підсилювача:    (13.4) Для двигуна:  (13.5) Для розімкненої системи:        Для замкненої системи:       АФХ, ЛАЧХ і ФЧХ окремих ланок і розімкненої системи Передаточні функції для безінерційних ланок (тахогенератори та електронний підсилювач) є дійсними чисто і не залежить від частоти. Передаточна функція тахогенератора ТГ1 з (11.1) . Передаточна функція електронного підсилювача з (11.2) . Передаточна функція тахогенератора ТГ2: . ,де K- коефіцієнт передачі відповідної ланки. Амплітудно-фазові характеристики являють собою одну точку з координатами (K;0). Амплітудно-частотні характеристики: . АЧХ – пряма, паралельна осі частот з ординатою рівною K (для лінійної АЧХ) або 20*lgK (для логарифмічної АЧХ). ЛАЧХ для тахогенератора ТГ1:, для електронного підсилювача: , для тахогенератора ТГ2: . Фазочастотні характеристики: . ФЧХ – пряма, яка проходить по осі частот.  Рис.14.1. АФХ безінерційних ланок (ТГ1, ТГ2, ЕП)  Рис.14.2. ЛАЧХ безінерційних Рис.14.3.ФЧХ безінерційних ланок (ТГ1, ТГ2) ланок (ТГ1, ТГ2, ЕП) Для електромашинного підсилювача з (13.4): , . Тоді АЧХ , (14.1) w V(w) U(w)  0 0 20  1 -7,238483917 17,09660963  2 -10,22753838 11,78602042  3 -10,29082189 7,579271998  4 -9,378181883 4,867722977  5 -8,316831683 3,168316832  6 -7,349784406 2,076605753  7 -6,523718822 1,349122804  8 -5,829414671 0,846653083  9 -5,245517996 0,488471517  10 -4,751131222 0,226244344  11 -4,328796654 0,029983007  12 -3,964647927 -0,119568747  13 -3,647842375 -0,235172256  14 -3,369914867 -0,325529191  15 -3,124225143 -0,396727002  16 -2,905524786 -0,453123508  17 -2,709628883 -0,497903795  18 -2,533169781 -0,533439986  19 -2,373412639 -0,561529206  20 -2,228116711 -0,583554377  21 -2,095430365 -0,600595007  22 -1,973811031 -0,613504901  23 -1,861963652 -0,622967549  24 -1,758792988 -0,62953622  25 -1,663366337 -0,633663366  26 -1,574884185 -0,635722481  27 -1,492656918 -0,636024535  28 -1,4160862 -0,63483048  29 -1,344650002 -0,632360855  30 -1,277890467 -0,628803245  31 -1,215404019 -0,624318132  32 -1,156833263 -0,619043514  33 -1,10186029 -0,613098597  34 -1,050201144 -0,606586767  35 -1,001601199 -0,599597997  36 -0,955831289 -0,592210815   ФЧХ .  Рис.14.4.АФХ ЕМП w lg(w) L(w)  1 0 25,37428319  2 0,301029996 23,86521827  4 0,602059991 20,47839365  8 0,903089987 15,40315668  16 1,204119983 9,368853072  32 1,505149978 2,359014944  64 1,806179974 -6,364227533  128 2,10720997 -16,94799552  256 2,408239965 -28,53380101  512 2,709269961 -40,45332311  1024 3,010299957 -52,46356604  2048 3,311329952 -64,49699222  4096 3,612359948 -76,53624646  8192 3,913389944 -88,57695976   Рис.14.5.ЛАЧХ ЕМП w lg(w) Fi(w)  1 0 -0,400503711  2 0,301029996 -0,714719629  4 0,602059991 -1,092026997  8 0,903089987 -1,426566721  16 1,204119983 -1,725502529  32 1,505149978 -2,062142884  64 1,806179974 -2,439347011  128 2,10720997 -2,74966544  256 2,408239965 -2,938943027  512 2,709269961 -3,039362306  1024 3,010299957 -3,090361877  2048 3,311329952 -3,115962737  4096 3,612359948 -3,128775877  8192 3,913389944 -3,135184038   Рис.14.6.ФЧХ ЕМП Для двигуна з (13.5):  Тоді АЧХ  ФЧХ . АФХ: w V(w) U(w)  0 0 2  10 -0,079872204 1,996805112  20 -0,158982512 1,987281399  30 -0,23659306 1,971608833  40 -0,31201248 1,950078003  50 -0,384615385 1,923076923  60 -0,453857791 1,89107413  70 -0,519287834 1,854599407  80 -0,580551524 1,814223512  90 -0,637393768 1,770538244  100 -0,689655172 1,724137931  110 -0,737265416 1,675603217  120 -0,78023407 1,625487646  130 -0,818639798 1,574307305  140 -0,852618758 1,522533496  150 -0,882352941 1,470588235  160 -0,908059024 1,418842225  170 -0,929978118 1,36761488  180 -0,948366702 1,317175975  190 -0,963488844 1,267748479  200 -0,975609756 1,219512195  210 -0,984990619 1,17260788  220 -0,991884581 1,127141569  230 -0,996533795 1,083188908  240 -0,999167361 1,040799334  250 -1 1   w  lg(w)  L(w)  1 0 6,020530427  2 0,301029996 6,020321974  4 0,602059991 6,019488262  8 0,903089987 6,016155013  16 1,204119983 6,002847543  32 1,505149978 5,950021716  64 1,806179974 5,74491864  128 2,10720997 5,009510843  256 2,408239965 2,906079109  512 2,709269961 -1,134673721  1024 3,010299957 -6,47803758  2048 3,311329952 -12,31143645  4096 3,612359948 -18,28394754  8192 3,913389944 -24,29244159  Рис.14.8.ЛАЧХ ДВ w lg(w) Fi(w)  1 0 -0,003999979  2 0,301029996 -0,007999829  4 0,602059991 -0,015998635  8 0,903089987 -0,031989084  16 1,204119983 -0,063912833  32 1,505149978 -0,127307742  64 1,806179974 -0,250617701  128 2,10720997 -0,473201458  256 2,408239965 -0,797255315  512 2,709269961 -1,116567592  1024 3,010299957 -1,331339927  2048 3,311329952 -1,44932698  4096 3,612359948 -1,509836793  8192 3,913389944 -1,540288217   Рис.14.9.ФЧХ ДВ Для розімкненої системи з (13.6): Тоді АЧХ  ФЧХ . АФХ: w V(w) U(w)  0 0 80,8  1 -29,51928393 68,95222578  2 -41,69751058 47,2819424  3 -41,93632473 30,11702297  4 -38,19272708 19,0545172  5 -33,84246301 12,12315074  6 -29,87726739 7,672432824  7 -26,48767048 4,708801354  8 -23,63608723 2,664123665  9 -21,2354149 1,208949993  10 -19,20041056 0,146010727  11 -17,45986596 -0,647102754  12 -15,95722541 -1,249004557  13 -14,64826929 -1,711805916  14 -13,49847712 -2,071052651  15 -12,48077217 -2,351623419  16 -11,57375442 -2,571339257  17 -10,76036065 -2,743235854  18 -10,02685965 -2,877031437  19 -9,362099647 -2,980097565  20 -8,756942307 -3,058115066  21 -8,203834498 -3,115525927  22 -7,696481748 -3,155850192  23 -7,229597265 -3,181911847   24 -6,798707455 -3,196002246  25 -6,4 -3,2   w  lg(w)  L(w)  1 0 37,50184101  2 0,301029996 35,99256764  4 0,602059991 32,6049093  8 0,903089987 27,52633908  16 1,204119983 21,478728  32 1,505149978 14,41606405  64 1,806179974 5,487718496  128 2,10720997 -5,831457292  256 2,408239965 -19,52069452  512 2,709269961 -35,48096944  1024 3,010299957 -52,83457623  2048 3,311329952 -70,70140128  4096 3,612359948 -88,71316662  8192 3,913389944 -106,762374  Рис.14.11.ЛАЧХ розімкненої системи w lg(w) Fi(w)  1 0 -0,40450369  2 0,301029996 -0,722719459  4 0,602059991 -1,108025632  8 0,903089987 -1,458555805  16 1,204119983 -1,789415362  32 1,505149978 -2,189450626  64 1,806179974 -2,689964712  128 2,10720997 -3,222866898  256 2,408239965 -3,736198342  512 2,709269961 -4,155929898  1024 3,010299957 -4,421701804  2048 3,311329952 -4,565289718  4096 3,612359948 -4,63861267  8192 3,913389944 -4,675472255   Рис.14.12.ФЧХ розімкненої системи  Рис.14.13.АФХ розімкненої системи (фрагмент) Стійкість, визначена по АФХ розімкненої системи. Запаси стійкості по амплітуді і фазі Визначення стійкості системи за виглядом частотних характеристик здійснюється за допомогою частотних критеріїв стійкості, зокрема за критерієм Найквіста: САУ буде стійка у замкненому стані, якщо АФХ розімкненої системи не охоплює точку на комплексній площині з координатами (-1;j0). АФХ розімкненої системи наведена на рис. 14.10, 14.13. Як видно з рис.14.11 АФХ не охоплює точку (-1;j0), отже система в замкненому стані буде стійкою. Запас стійкості по амплітуді складає – 0,4. Запас стійкості по фазі складає приблизно – 10 градусів. Стійкість, визначена по ЛАЧХ та ФЧХ розімкненої системи. Запаси стійкості по амплітуді і фазі САУ буде стійка в замкненому стані, якщо на частоті, при якій ФЧХ розімкненої системи дорівнює , ЛАЧХ розімкненої системи буде знаходитись нижче осі абсцис (в децибелах), тобто коефіцієнт передачі на цій частоті менший за одиницю(за формулювання критерію Найквіста для ЛАЧХ і ФЧХ). З ФЧХ розімкненої системи (рис. 14.12) визначаємо вказану частоту, ЛАЧХ розімкненої системи за рис. 14.11 при цій частоті близько - 1 дБ, тобто нижче осі абсцис. Таким чином замкнена система буде стійкою. Тоді запас стійкості по амплітуді буде визначатися як 0-(- 1дБ)= 1 дБ. Запас стійкості по фазі: з рис. 14.11 визначаємо частоту, при якій коефіцієнт підсилення дорівнює 1 (0 дБ), тоді з рис.14.12 визначаємо значення ФЧХ при цій частоті – близько - 3,0, тоді запас стійкості по фазі дорівнює 3,14-|3,0|=0,14 рад. Будуємо ЛАЧХ і ЛФЧХ: w lg(w) L(w) Fi(w)  1 0 37,50184101 -0,40450369  2 0,301029996 35,99256764 -0,722719459  4 0,602059991 32,6049093 -1,108025632  8 0,903089987 27,52633908 -1,458555805  16 1,204119983 21,478728 -1,789415362  32 1,505149978 14,41606405 -2,189450626  64 1,806179974 5,487718496 -2,689964712  128 2,10720997 -5,831457292 -3,222866898  256 2,408239965 -19,52069452 -3,736198342  512 2,709269961 -35,48096944 -4,155929898  1024 3,010299957 -52,83457623 -4,421701804  2048 3,311329952 -70,70140128 -4,565289718  4096 3,612359948 -88,71316662 -4,63861267  8192 3,913389944 -106,762374 -4,675472255   Графік перехідного процесу при одиничній стрибкоподібній дії вхідної величини Для того, щоб побудувати графік перехідного процесу, використаємо передаточну функцію замкненої системи та математичний пакет MATLAB 6.1.   , ,  ,  , , Вводимо параметри характеристики в командному вікні: step([1],[3.96e-7 1.19e-4 5.247e-3 1.006]),grid  Якісні показники системи За графіком перехідного процесу визначаємо наступні якісні показники системи. Час перехідного процесу – 0,5 с. Максимальне значення xmax=1,72 Статичне значення xc=1 Перерегулювання – відношення максимального відхилення регульованої величини до свого усталеного значення у відсотках. .
Антиботан аватар за замовчуванням

01.01.1970 03:01-

Коментарі

Ви не можете залишити коментар. Для цього, будь ласка, увійдіть або зареєструйтесь.

Ділись своїми роботами та отримуй миттєві бонуси!

Маєш корисні навчальні матеріали, які припадають пилом на твоєму комп'ютері? Розрахункові, лабораторні, практичні чи контрольні роботи — завантажуй їх прямо зараз і одразу отримуй бали на свій рахунок! Заархівуй всі файли в один .zip (до 100 МБ) або завантажуй кожен файл окремо. Внесок у спільноту – це легкий спосіб допомогти іншим та отримати додаткові можливості на сайті. Твої старі роботи можуть приносити тобі нові нагороди!
Нічого не вибрано
0%

Оголошення від адміністратора

Антиботан аватар за замовчуванням

Подякувати Студентському архіву довільною сумою

Admin

26.02.2023 12:38

Дякуємо, що користуєтесь нашим архівом!