Пристрій мікропроцесорної обробки аналогової інформації

Інформація про навчальний заклад

ВУЗ:
Національний університет Львівська політехніка
Інститут:
Не вказано
Факультет:
Не вказано
Кафедра:
Кафедра САПР

Інформація про роботу

Рік:
2024
Тип роботи:
Курсова робота
Предмет:
Комп'ютери та мікропроцесорні системи
Група:
К

Частина тексту файла (без зображень, графіків і формул):

Міністерство освіти і науки України Національний університет “Львівська політехніка” Кафедра САПР  КУРСОВА РОБОТА з дисципліни: “Комп’ютери і мікропроцесорні системи” на тему: “Пристрій мікропроцесорної обробки аналогової інформації” Допущено до захисту: Львів 200 р. ЗАВДАННЯ ДО КУРСОВОЇ РОБОТИ. 1. Тема проекту : “Пристрій мікропроцесорної обробки аналогової інформації”. 2. Термін здачі : до 20.12.200 р. Постановка задачі: Розробити компоненти технічного і програмного забезпечення мікропроцесорного пристрою на базі МП КР580ВМ80, який включає аналогово-цифровий і цифро-аналоговий перетворювачі і виконує функцію цифрової обробки аналогової інформації. Обробка описується заданим пропорційно інтегровано - диференціальним рівнянням, що пов’язує аналогові сигнали х(t) на вході і у(t) на виході системи. Початкові дані будуть наступними: функціональна залежність ; розрядність АЦП – 10; вхідний сигнал – дво полярний; організація обміну з АЦП – через переривання RST 5; використати режим роботи 1 мікросхеми КР580ВВ55; побудувати ОЗП об’ємом 4К з використанням мікросхем 1024×4; вид функціонального вузла – буферний регістр КР580ИР83. АНОТАЦІЯ. Студент: Курсова робота на тему “Пристрій мікропроцесорної обробки аналогової інформації”. НУ “Львівська політехніка”. Кафедра: САПР. Дисципліна: “Комп’ютери і мікропроцесорні системи”. Дана курсова робота складається з 28 сторінок, 14 таблиць, 11 схем, 2 додатків. В ній розроблено компоненти апаратного і програмного забезпечення мікропроцесорного пристрою, який включає аналого- і цифро-аналогові перетворювачі і виконує обробку за функціональною залежністю:  аналогового сигналу. Дана робота охоплює ввід і первинну обробку аналогової інформації, подальшу цифрову обробку інформації за програмою і вхідними даними, а також вивід обробленої інформації в аналоговій формі для подальшого використання. ЗМІСТ. ЗАВДАННЯ ДО КУРСОВОЇ РОБОТИ 2 АНОТАЦІЯ 3 ЗМІСТ 4 ПЕРЕЛІК УМОВНИХ СКОРОЧЕНЬ 5 ВСТУП 6 1. СИНТЕЗ АНАЛОГОВОЇ СХЕМИ ЦИФРОВОГО ФІЛЬТРУ 7 2. СИНТЕЗ СТРУКТУРНОЇ СХЕМИ ЦИФРОВОГО ПРИСТРОЮ 8 3. ВИБІР АЦП І ЦАП 9 3.1. ВИБІР АЦП 9 3.2. ВИБІР ЦАП 11 3.3. СТРУКТУРА ПРЕДСТАВЛЕННЯ ДАНИХ 13 4. СТРУКТУРНА СХЕМА ТА АЛГОРИТМ ФУНКЦІОНУВАННЯ МПП 15 4.1. ОПИС СТРУКТУРНОЇ СХЕМИ МПП 15 4.2. РОЗПОДІЛ АДРЕСНОГО ПРОСТОРУ 16 4.3. АЛГОРИТМ ФУНКЦІОНУВАННЯ МПП 17 5. ЗАГАЛЬНА СТРУКТУРА ПРОГРАМИ РОБОТИ МПП 19 5.1. ОПИС ПРОГРАМ ВВОДУ/ВИВОДУ 19 5.2. ОПИС ПРОГРАМИ ОБРОБКИ ІНФОРМАЦІЇ 21 5.3. ОЦІНКА ВЕРХНЬОЇ ФІНІТНОЇ ЧАСТОТИ 22 6. РЕАЛІЗАЦІЯ ОЗП ДЛЯ МПС 23 7. ОПИС ФУНКЦІОНАЛЬНОГО ВУЗЛА 24 АНАЛІЗ РЕЗУЛЬТАТІВ ТА ВИСНОВКИ 25 СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ 26 ДОДАТОК 1 27 ДОДАТОК 2 28 ПЕРЕЛІК УМОВНИХ СКОРОЧЕНЬ. МП Мікропроцесор  МПП Мікропроцесорний пристрій  МПС Мікропроцесорна система  ДШВ/В Дешифратор вводу/виводу  ДШП Дешифратор адреси комірки пам’яті  ІС Інтегральна схема  МК Мікроконтролер  ГТІ Генератор тактових імпульсів  АЦП Аналого-цифровий перетворювач  ОЗП Оперативний запам`ятовуючий пристрій  ОП Операційний підсилювач  ПЗП Постійний запам`ятовуючий пристрій  ППІ Паралельний програмований інтерфейс  РКС Регістр керуючого слова  СК Системний контролер  СШ Системна шина  ТГ Тактовий генератор  ЦАП Цифро-аналоговий перетворювач  ЦФ Цифровий фільтр  ША Шина адрес  ШД Шина даних  ШК Шина керування   ВСТУП. Описаний у даній курсовій роботі пристрій являє собою цифровий фільтр, побудований на основі мікропроцесорного комплекту (в даному проекті використовується серія КР580). Цифровим фільтром називається цифрова система для зміни частотного спектра дискретних сигналів. При фільтрації сигналів у реальному часі неперервний сигнал за допомогою аналого-цифрового перетворювача перетворюється у дискретний, який поступає на вхід цифрового фільтра. Отриманий сигнал на цифро-аналоговому перетворювачі знову перетворюється в аналоговий сигнал. Цифрові фільтри мають ряд переваг порівняно з аналоговими, побудованими на резисторах, конденсаторах та підсилювачах: Нечутливість характеристик фільтра до розкиду параметрів елементів, що входять до його складу, їх часовому і температурному дрейфам. Малі розміри та висока надійність роботи фільтра, пов’язані з використанням ВІС. Легкість зміни параметрів і характеристик цифрового фільтра, що при використанні МП здійснюється модифікацією програмного забезпечення або таблиць коефіцієнтів. Можливість реалізації адаптивних фільтрів, тобто фільтрів з параиетрами, що змінюються в процесі роботи. Основним недоліком цифрових фільтрів є обмежена швидкодія. Час перетворення сигналу за допомогою АЦП і ЦАП і особливо час, необхідний для роботи програми цифрової обробки інформації, обмежують знизу період  між послідовними замірами вхідного сигналу і значеннями вихідного сигналу. Це у свою чергу обмежує граничну частоту  вхідного сигналу, фільтрація якого може бути виконана. В курсовій роботі детально розглянуті найважливіші аспекти побудови пристрою, описані схеми підключення різних функціональних вузлів, розроблене програмне забезпечення для реалізації вводу інформації через АЦП, її цифрової обробки та виводу через ЦАП. . Виконання курсової роботи має за мету : - поглиблення теоретичних знань з технічних і програмних засобів мікропроцесорних пристроїв (МПП); - розвиток навиків самостійної розробки загальної структури МПП з аналого-цифровим і цифро-аналоговим перетворенням інформації, побудови принципових схем окремих вузлів, розробки та відлагодження програмного забезпечення на мові Асемблеру мікропроцесора (МП) КР580ВМ80; - набуття навиків роботи з технічною та довідниковою літературою по вибору аналого-цифрового і цифро-аналогового перетворювачів (АЦП і ЦАП), використання стандартних підпрограм з прикладного програмного забезпечення МП КР580ВМ80. 1. СИНТЕЗ АНАЛОГОВОЇ СХЕМИ ЦИФРОВОГО ФІЛЬТРУ. Пристрій, що реалізує на основі певної функціональної залежності перетворення вхідного аналогового сигналу у аналоговий вихідний сигнал називають аналоговим фільтром. Передавальна характеристика аналогового фільтру забезпечує відповідні амплітудно-частотні та фазочастотні залежності, що визначають тип фільтру. Розглянемо задане рівняння цифрового фільтру: , (1.1) де x(t) - вхідний аналоговий сигнал; y(t) - вихідний аналоговий сигнал; ( , ( - сталі величини. Використавши перетворення Лапласа   ; ;    отримаємо: Y(P) = X(P) + X(P)/(τ∙P), (1.2) Y(P) = X(P)∙(1 - 1/(τ∙P)), (1.3) Y(P) =()∙X(P) (1.4) У виразі (1.4) знаменник представляє елементи у вхідному колі: опір R. Чисельник визначає набір елементів у вихідному колі: опір R та ємність C. C X(t) R Y(t) Рис 1.1. Аналогова схема ЦФ. 2. СИНТЕЗ СТРУКТУРНОЇ СХЕМИ ЦИФРОВОГО ПРИСТРОЮ. Для заданого рівняння побудуємо структурну схему ЦФ. Дискретизація аналогового рівняння полягає в заміні безперервної величини її дискретними відліками  і відповідними перетвореннями похідних та інтегралів. Очевидна дискретизація першої похідної - її заміна першою скінченою різницею: dx(t)/dt ( (xn – xn-1)/∆t, де ∆t - інтервал дискретизації. Аналогічні скінченні різниці використовуються при дискретизації похідних вищих порядків. Так, наприклад, похідна другого порядку може бути замінена виразом: d2x(t)/dt2 ( (xn – 2∙xn-1 + xn-2)/∆t2. Один з способів дискретизації інтеграла полягає в його усуненні шляхом диференціювання рівняння. Інший спосіб, прямої дискретизації, пов’язаний з такими перетвореннями: ; . В результаті часової дискретизації заданого рівняння отримаємо:  Yn = Xn + Yn-1/( + (Xn + Xn-1)∙(t/(2∙(). Переносимо Yn в ліву сторону, все решта в праву. Наше рівняння набуде вигляду: Yn = aXn + bXn-1 + сYn-1, де a = , b = , с =. Як було вище сказано реалізація ЦФ може бути апаратна і цифрова. При апаратній реалізації необхідними елементами є перемножувачі, суматори і елементи затримки. На рисунку 2.1. зображена структурна схема апаратної реалізації цифрового фільтру, який описується даним рівнянням. a Xn XY ∑ Yn b c DL XY Рис. 2.1. Структурна схема реалізації ЦФ, де: XY - елемент множення, DL - елемент затримки, ( - суматор. 3. ВИБІР АЦП І ЦАП. 3.1. Вибір АЦП. В завданні до курсової роботи вказано, що необхідно використати 10-розрядний АЦП. Цій вимозі задовольняють, наприклад, мікросхеми К1113ПВ1(А-В), що є повністю функціонально закінченими 10-розрядними АЦП, які приєднуються до МП. Цей АЦП забезпечує перетворення як однополярної напруги (для цього необхідно вивід 15 з’єднати з виводом 16) в діапазоні 0...9,95 В, так і біполярної напруги в діапазоні -4,975...+4,975 В паралельний двійковий код. До складу ІС входять ЦАП, компаратор напруги, регістр послідовного наближення (РПН), джерело опорної напруги (ДОН), генератор тактових імпульсів, вихідний буферний регістр з трьома станами, схеми керування. Вихідні каскади з трьома станами дозволяють читати результат перетворення одразу на шину даних МП. В ІС вихідний струм ЦАП порівнюється зі струмом вхідного резистора від джерела сигналу і формується логічний сигнал РПН. Стабілізація розрядних струмів ЦАП здійснюється за допомогою вбудованого ДОН. Синхронізація РПН забезпечується імпульсами вбудованого ГТІ з частотою від 300 до 400 кГц. Встановлення РПН в вихідне положення і запуск його в режим перетворення здійснюється по зовнішньому сигналу "гасіння і перетворення". По закінченні перетворення АЦП виробляє сигнал "готовність даних" і інформація з РПН поступає на цифрові входи через каскади з трьома станами. Корпус К1113ПВ1(A-B) типу 2104.18-1. Нумерація і призначення виводів: 1-8 цифрові виходи 1-8; 9 цифрові виходи 1-8; 10 напруга джерела живлення UCC1; 11 гашення і перетворення; 12 напруга джерела живлення UCC2; 13 аналоговий вихід; 14 аналогова земля; 15 керування зсувом нуля; 16 цифрова земля; 17 готовність даних; 18 цифровий вихід 10. Номінальні напруги джерел живлення: UCC1=5В і UCC2=-15В. Включення АЦП в режимі роботи з уніполярною вхідною напругою передбачає під’єднання виводу 15 до цифрової землі (вивід 16). При цьому на виході вбудованого ЦАП задається струм, який дорівнює струму цифрового виводу 1, але має протилежну полярність. Діапазон двополярної вхідної напруги –5.5– +5.5В. Встановлення РПН у вихідний стан і запуск його в режим перетворення проводиться по зовнішньому сигналу “Гашення /перетворення”. По закінченню перетворення АЦП видає сигнал “Готовність даних”, і інформація з РПН поступає на цифрові виходи через каскади з трьома станами.  Рис.3.1.1 Часова діаграма вхідних і вихідних сигналів АЦП.  Рис. 3.1.2. Рекомендована схема включення ВІС АЦП К1113ПВ1.  Рис. 3.1.3. Схема підключення АЦП до ППІ КР580ВВ55. 3.2. Вибір ЦАП. Використаємо 12-ти розрядний ЦАП, збільшивши тим самим вхідну розрядність на 2. Таблиця 3.2.1. Основні параметри 12-ти розрядних ЦАП. Мікросхема N tпер, мкс m  К572ПА2 12 15 48  К594ПА1 12 3,5 24  К1108ПА1 12 0,4 - 0,7 24   Серед мікросхем ЦАП, які найбільш прийнятні за швидкістю перетворення інформації, виберемо мікросхему К1108ПА1. Мікросхема 12-розрядного ЦАП типу К1108ПА1 призначена для складання блоків аналогового вводу-виводу з підвищеною швидкодією. Мікросхема К1108ПА1 конструктивно оформлена в 24-виводному герметичному металокерамічному корпусі типу 210Б.24-1 з вертикальним розміщенням виводів. Нумерація і призначення виводів мікросхеми К1108ПА1: 1 – напруга джерела живлення Ucc1; 2 – напруга джерела живлення Ucc2; 3 – вихід ОУ компенсації; 4 – опорна напруга UREF; 5 – вивід резистора; 6 – загальний вивід матриці R-2R; 7 – вивід резистора; 8 – аналоговий вихід; 9 – вивід резистора зворотного зв’язку Ro.c1; 10 – вивід резистора зворотного зв’язку Ro.c2; 11 – вхід ОУ компенсації; 12 – загальний; 13 – цифровий вхід 1 (СР); 14-23 – цифрові входи 2-11; 24 – цифровий вхід 12 (МР); Основні електричні параметри мікросхеми при температурі навколишнього середовища 25 ( 10 (С наведені в таблиці 3.2.1. Таблиця 3.2.1. Основні електричні параметри IC К1108ПА1. Основні електричні параметри Мінімально доп. знач. Макс. доп. знач.  Число розрядів b 12 -  Диференційна не лінійність δLD, % 0,024 0,024  Абсолютна похибка перетворення в кінцевій точці шкали δFS,МР -30 30  Час встановлення вихідного струму ts1, мкс - 400  Струм споживання Icc1, мA 15 15  Струм споживання Icc2, мA 46 46    Рис. 3.2.1. Принципова електрична схема підключення ЦАП 1108ПА1.  Рис. 3.2.2. Схема підключення ЦАП до ППІ КР580ВВ55. 3.3. Структура представлення даних. Оскільки розрядність АЦП дорівнює 10, то результат перетворення АЦП в залежності від вхідного сигналу подамо у вигляді таблиць: Таблиця 3.3.1. Відповідність вхідного цифрового та аналогового сигналу. Вхід Код  +Uxmax 512  +Uxmax/2 256  0 0  Результат перетворення 12-ти розрядного блоку ЦАП в залежності від цифрового коду yn вихідної напруги Uyn подано у вигляді таблиці. Таблиця 3.3.2. Відповідність вихідного цифрового та аналогового сигналу. Код Вихід ЦАП  212-1 +Uymax  211 +Uxmax/2  0 0  Підставимо залежності у рівняння ЦФ : Uymax∙yn/212 = a∙Uxmax∙xn/212 + b∙Uxmax∙xn-1/212 + c∙Uymax∙yn-1/212, (Uymax/Uxmax)∙yn = a∙xn + b∙xn-1 + c∙yn-1, yn = a∙(Uxmax/Uymax)∙xn + b∙(Uxmax/Uymax)xn-1 + c∙yn-1. Коефіцієнти ЦФ при xn, xn-1, yn-1 залежать від співвідношення напруг (Uymax/Uxmax) на вході АЦП і виході ЦАП даного МПП. Тому при аналізі структури даних ми вибрали перетворювачі з електричними параметрами (Uymax/Uxmax) = 1. Згідно завдання, розрядність вхідного сигналу є рівною 10, тобто для представлення xn та xn-1 потрібно по 2 байти. Для представлення вихідного сигналу yn та yn-1 потрібно також по 2 байти, оскільки при обчисленні виразу результат рівняння може перевищити 1 байт. Для розміщення коефіцієнтів a, b, c достатньо одного байта, при будь-яких значеннях . Отже, структура представлення даних набуде наступного вигляду. Таблиця 3.3.3. Структура представлення даних. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0                   а                  b                  с        S          xn        S          xn-1      S            yn      S            yn-1   Зазначена в таблиці 3.3.3. структура представлення даних визначає формати виконання арифметичних операцій обчислення вихідного значення цифрового фільтра. 4. СТРУКТУРНА СХЕМА ТА АЛГОРИТМ ФУНКЦІОНУВАННЯ МПП. 4.1. Опис структурної схеми МПП. Всі компоненти МПП підімкнені до системної шини(СШ) - набору ліній, що з’єднує систему. Системна шина складається з 3 окремих шин: 1) ШД - шина даних (двоспрямована); 2) ША - шина адрес (односпрямована); 3) ШК - шина керування (набір окремих ліній). За рахунок того, що виводи всіх компонент МПП під’єднані до СШ, вони повинні мати крім станів, що забезпечують логічний нуль чи одиничку на виході, третій стан, стан з високим вихідним опором — високоімпендансний стан. Структурна схема реалізації проектованого МПП наведена на рис. 4.1.1:  Рис. 4.1.1. Структурна схема МПП. Таблиця 4.1.1. Мікросхеми МПП. Позначення Опис Мікросхема  МП Мікропроцесор КР580ВМ80  ТГ Тактовий генератор КР580ГФ24  СК Системний контролер КР580ВК28  ППІ Паралельний програмований інтерфейс КР580ВВ55А  АЦП Аналогово-цифровий перетворювач К1113ПВ1  ЦАП Цифро-аналоговий перетворювач К1108ПA1  МП – формує адреси команд, видає команди з пам’яті, їх дешифрує, видає для команд потрібні адреси, виконує над ними операції – передбачені командами, при необхідності записує результат в пам’ять, формує керуючі сигнали для обміну, реагує на можливі зовнішні сигнали. ТГ – формує синхроімпульси F1, F2 для роботи МП і інших компонент, які входять до МПП. Синхроімпульси F1, F2 мають амплітуду 12B, але відрізняються один від одного щільністю і зсунуті в часі. Крім того, мікросхема КР580ГФ24, виробляє сигнал початкового встановлення RESET і готовності даних READY, а також , за яким системний контролер фіксує слово стану процесора. ПЗП – призначений для постійного зберігання потрібних даних і програм. У випадку даного цифрового фільтру він зберігає програму, за якою працює цифровий фільтр, а також постійні коефіцієнти. ОЗП – використовується як тимчасовий накопичувач інформації, а саме: накопичувач кодів програми та даних, які потрібні для розрахунків. СК – призначений для формування сигналів керування, які формуються процесором при зверненні до ЗП (MEMP, MEMW,I/OR, J/OW, INTA). АЦП отримує на вході МПП аналоговий сигнал та перетворює його в цифровий код. ЦАП здійснює перетворення двійкового коду у відповідний аналоговий сигнал. 4.2. Розподіл адресного простору. В адресний простір МП КР580ВМ80 входить 64К адрес пам’яті (216), що визначається 16-ти розрядною адресною шиною. Мікропроцесор КР580ВМ80 може здійснювати синхронний і асинхронний обмін інформацією за даними адресами з пам’яттю (ПЗП, ОЗП) та зовнішніми пристроями. Об’єм оперативної пам’яті в МПП повинен бути 4Кб. Але ще потрібно надати деякий адресний простір ПЗП для зберігання програми і процедури початкової ініціалізації. Для ПЗП відведено адреси від 0000h до 0153h. Тут записані процедури ініціалізації, обробки переривання та процедура обробки сигналу. Адресація ОЗП починається з адреси 0154h і запису вхідних та вихідних даних. Таблиця 4.2.1. Розподіл простору адрес в МПП. П З П 0000h JMP INIT_ Перехід на процедуру ініціалізації   0028h JMP INT_ Перехід на процедуру обробки переривання   0035h DOP Процедура переводу в доповнений код   0045h DMULT_ Процедура множення двох чисел   0060h INT_ Процедура обробки переривання   0080h INIT_ Процедура ініціалізації   0100h DOP Процедура   0120h X_to_Y Процедура обробки сигналу   0151h a Значення а   0152h b Значення b  О З П 0153h с Значення с   0154h xn Вхідний сигнал   0156h xn-1 Попередній вхідний сигнал   0158h yn Вихідний сигнал   015Ah yn-1 Попередній вихідний сигнал   05FFh STACK Вершина стеку, початковий SP  У нашій МПС є також два ППІ КР580ВВ55. Для звертання до каналів вводу і каналів виводу їм необхідно також присвоїти конкретні адреси. У МПС на основі МП КР580ВМ80А для зовнішніх пристроїв виділено 256 адрес. Виходячи з цього, канали вводу/виводу, а також регістри керуючих слів матимуть адреси зазначені в таблиці 4.2.2. Таблиця 4.2.2. Адреси портів ППІ. Адреса для ППІ вводу Адреса для ППІ виводу  А 0B0H 0D0H  B 0B1H 0D1H  C 0B2H 0D2H  РКС 0B3H 0D3H  Дешифратори адрес ППІ мають наступний вигляд:  Рис. 4.2.1. Дешифратори ППІ. 4.3. Алгоритм функціонування МПП. При одночасному включенні живлення -5В; +5В і 12В (або послідовно у вказаному порядку) і поступленні тактових імпульсів на МП з ГТІ, всі регістри і прапорці МП встановлюються в довільні стани. Після цього подається з ГТІ на вхід RESET МП сигнал високого рівня тривалістю не менше 3 тактів – лічильник команд (PC), тригер дозволу переривання (вихід INTE), а також тригер підтвердження захоплення (вихід HLDA) скидаються, і мікропроцесор починає вибірку з пам’яті команд, розміщених з нульової адреси. Ввід інформації з АЦП здійснюється в режимі переривань. При готовності даних формується сигнал переривання, в результаті чого МП переходить на підпрограму обробки даного переривання. Далі відбувається ввід інформації з АЦП. Введена інформація обробляється у відповідності до заданого рівняння і виводиться у вигляді аналогового сигналу через ЦАП. В процесі обробки запиту на переривання, яке здійснюється подачею на вхід ІNT мікропроцесора логічної одиниці, мікропроцесор сигналом INTE = 0 забороняє всі можливі запити на переривання. Далі виконується машинний цикл переривання, в якому видається керуюче слово з одиницями в INTA що означає підтвердження переривання, М1 – початок машинного циклу, W0 – запис або вихід, а MEMR = 0 – читання з пам’яті. При цьому сигнал DBIN = 1 означає прийом інформації з ШД. Тобто мікропроцесор читає з шини даних деяку інформацію, що вибирається з пам’яті чи портів. В цей момент на ШД повинен бути встановлений код команди RST 5. Для цифрової обробки фільтра, що описується рівнянням Yn = aXn + bXn-1 + сYn-1, з вводом значень, використовуючи RST 5. В двійковій формі команда RST N має вигляд: 1 1  1 1 1. Для RST 5 код буде 11101111. Ця команда здійснює перехід на адресу 8*N = 8*5 = 4010 = 28h. Алгоритм функціонування МПП зображений на рисунку 4.3.1.  Рис. 4.3.1. Алгоритм функціонування МПП. Рис. 4.3.2. Структура підпрограми обробки переривань. 5. ЗАГАЛЬНА СТРУКТУРА ПРОГРАМИ РОБОТИ МПП. Основна програма функціонує згідно алгоритму, наведеного на сторінці 18. Вона починається з ініціалізації мікросхеми КР580ВВ55 для обміну з ЦАП і АЦП. Після того АЦП встановлюється (після гашення) в режим перетворення вхідного сигналу. Далі викликається підпрограма цифрової обробки інформації. Основна програма має наступний вигляд: INIT_: 7 MVI A,0В6h ;ініціалізація ВВ55 для вводу 10 OUT 0B3h 7 MVI A,080h ;ініціалізація ВВ55 для виводу 10 OUT 0D3h 7 MVI A,80h ;запуск АЦП 10 OUT 0B2h 7 MVI A,00h ;дозвіл на перетворення 10 OUT 0B2h 17 CALL X_TO_Y ;розрахунок згідно виведеної формули END Загальна кількість тактів, за які виконується основна програма рівна 84. 5.1. Опис програм вводу/виводу. Згідно завдання необхідно вводити 10 і виводити 12 біт даних. Для цього використаємо дві мікросхеми КР580ВВ55. Одну запрограмуємо в режим 1 на ввід: канал А та молодші розряди каналу В. Іншу запрограмуємо в режим 0 на вивід: канал А та молодші розряди каналу B. Для запуску АЦП будемо використовувати розряд С7 каналу С. Таким чином керуюче слово для першого ППІ набуде вигляду:  Керуюче слово для другого ППІ має вигляд:  Код програми, що ініціалізує ППІ, має такий вигляд: MVI A,0В6h ;ініціалізація ВВ55 для вводу OUT 0B3h MVI A,080h ;ініціалізація ВВ55 для виводу OUT 0D3h Наступним кроком для зчитування інформації буде ініціалізація АЦП. Для цього необхідно на вхід «Гашення/пертворення» АЦП подати логічну 1 для скидання та логічний 0 для запуску перетворення. Як видно зі схеми підключення АЦП, вихід «Гашення/пертворення» АЦП підключений до ППІ. Це є лінія каналу С  С7. Отже, щоб ініціалізувати АЦП необхідно виконати наступну послідовність команд: MVI A,80h ;запуск АЦП OUT 0B2h MOV A,00h ;дозвіл на перетворення OUT 0B2h Після задання режиму роботи ППІ та ініціалізації АЦП можна приступити до зчитування значення Xn з АЦП. Дані з виходу АЦП поступають в канал А. IN 0B0h MOV L,A IN 0B1h ANI 00000011b MOV H,A Після виконання цієї послідовності команд введене Xn буде міститись в HL. Вивід результату на ЦАП виконується через канал A та молодші розряди каналу В і програмується так: MOV A,L OUT 0D0h ;записуємо молодший байт в порт А MOV A,H OUT 0D1h ;записуємо старший байт в порт В MOV A,80h OUT 0D2h ;дозволяємо вивід на ЦАП 5.2. Опис програми обробки інформації. Підпрограма обробки переривання: INT_: 4 DI ;заборонити переривання 11 PUSH PSW 11 PUSH H 16 LHLD 154h ;занесення попереднього значення Xn в комірку 16 SHLD 156h ;для Xn-1 16 LHLD 158h ;занесення значення Yn в комірку 16 SHLD 15Аh ;для Yn-1 10 IN 0B0h 5 MOV L,A 10 IN 0B1h 7 ANI 00000011b 7 MOV H,A 16 SHLD 154h ;збереження в Xn 10 POP H 10 POP PSW 4 EI ;дозволити переривання 10 RET ;вихід з підпрограми Загальна кількість тактів, за які виконується підпрограма, рівна 179. Підпрограма множення двобайтового числа на однобайтове: 10 DMULT_: LXI H,0 7 MVI C,8 10 NXbit: DAD H 4 RAL 10 JNC NoAdd 10 DAD D 5 NoAdd: ACI 0 10 DCR C 10 JNZ NxBit 10 RET Загальна кількість тактів, за які виконується підпрограма, рівна 499. Підпрограма переводу 2-х байтового числа в доповнений код: 5 DOP: MOV A,H 4 CMA 5 MOV H,A 5 MOV A,L 4 CMA 5 MOV L,A 5 INX H 10 RET Загальна кількість тактів, за які виконується підпрограма: 43. Текст основної програми: X_TO_Y: M0: 16 LHLD 154h 5 MOV A,H 4 ANA A 10 JP M1 17 CALL DOP M1: 4 XCHG 13 LDA 151h 17 CALL DMULT 16 SHLD 158H 16 LHLD 156H 5 MOV A,H 4 ANA A 10 JP M2 17 CALL DOP M2: 4 XCHG 13 LDA 152h 17 CALL DMULT 4 XCHG 16 LHLD 158h 10 DAD D 16 SHLD 158h 16 LHLD 15Аh 5 MOV A,H 4 ANA A 10 JP M3 17 CALL DOP M3: 4 XCHG 13 LDA 153h 17 CALL DMULT 4 XCHG 16 LHLD 158h 10 DAD D 16 SHLD 158h 5 MOV A,L 10 OUT 0D0h 5 MOV A,H 10 OUT 0D1h 5 MOV A,80h 10 OUT 0D2h 10 JMP M0 Загальна кількість тактів, за які виконується підпрограма, рівна 405. 5.3 Оцінка верхньої фінітної частоти вхідного аналогового сигналу. Таблиця 5.3.1. Загальна кількість тактів. Назва програми К-сть тактів необхідних для виконання програми Число виконань даної програми за один цикл Кількість тактів за цикл та виконання програми  INIT_ 84 1 84  DMULT_ 499 3 1497  DOP 43 3 129  INT_ 179 1 179  X_TO_Y 405 1 405  Загальна кількість тактів, за які виконується програма 2294  Для максимальної тактової частоти f = 2.5MHz для МП КР580ВМ80, частота видачі інформації складає: Гц. Теорема Котельнікова стверджує можливість представлення аналогового сигналу дискретним рядом, отриманим з АЦП, у випадку виконання умови f(t ( 2 fmax, де f(t -частота дискретизації; fmax - фінітна частота вхідного аналогового сигналу. За теоремою Котельнікова, верхня фінітна частота для фільтра складає:  Гц. 6. РЕАЛІЗАЦІЯ ОЗП ДЛЯ МПС. Згідно поставленого завдання необхідно побудувати ОЗП об’ємом 4K на базі мікросхем 1024×4. Використаємо схеми об’єднання модулів для нарощення розрядності та для нарощення об’єму. Кількість мікросхем, яка необхідна для нарощення розрядності визначається за формулою: , де - розрядність пам’яті, яку треба побудувати;- розрядність однієї мікросхеми К=8:4=2. Ці 2 мікросхеми потрібно об’єднати паралельно. Визначимо, яка кількість мікросхем потрібна для нарощення об’єму : , де N-об’єм пам’яті, яку необхідно побудувати, Ni - об’єм пaм’яті однієї мікросхеми:. Дані мікросхеми об’єднаємо послідовно. Побудову здійснимо на базі мікросхем пам’яті КМ132РУ8, яка є сумісною по входу і виходу з ТТЛ-схемами. Таблиця 6.1. Адресація комірок пам’яті. 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0  Min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  Max 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1   7. ОПИС ФУНКЦІОНАЛЬНОГО ВУЗЛА. Мікросхема КР580ИР83 являє собою 8-розрядний буферний регістр призначений для введення і виведення інформації. Він може використовуватися як в МПС, побудованих на мікросхемах серії КР580, так і в інших обчислювальних системах і пристроях дискретної математики. Мікросхема КР580ИР83 відрізняється від мікросхеми КР580ИР82 тим, що має інверсні виходи. Розміщення виводів обох мікросхем однакове. Принципова схема КР580ИР83 зображена на рисунку 7.1. Рис. 7.1. Принципова схема КР580ИР83. Мікросхема має вісім тригерів D-типу і вісім вихідних буферів, які мають на виході стан ‘Вимкнено’. Керування передачею інформації здійснюється за допомогою сигналу STB ‘Строб’. При поступленні на вхід STB сигналу високого рівня здійснюється нетактовна передача інформації з входу DI на вихід DO. При поступленні на вхід STB сигналу низького рівня мікросхема зберігає інформацію попереднього такту; при подачі на вхід STB додатного перепаду імпульсу відбувається ‘Захоплення’ вхідної інформації. Вихідний буфер мікросхеми КР580ИР83 керується сигналом ОЕ ‘Дозвіл виходу’. При надходженні на вхід ОЕ сигналу високого рівня вихідний буфер переводиться в стан ‘Виключено’. Призначення виводів КР580ИР83 наведено в таблиці 7.1. Таблиця 7.1. Призначення виводів мікросхеми КР580ИР83. Номер виводу Позначення Призначення  1 – 8 DI0 – DI7 Входи регістра  9 OE Дозвіл виходу  10 GND Загальний  11 STB Строб  19 – 12 DO0 – DO7 Виходи регістра  20 Ucc + 5 В   АНАЛІЗ РЕЗУЛЬТАТІВ ТА ВИСНОВКИ. Отже, в процесі виконання курсового проекту було розроблено компоненти технічного і програмного забезпечення мікропроцесорного пристрою, який включає аналогово-цифровий і цифро-аналоговий перетворювачі і виконує функцію лінійної системи автоматизованого регулювання, що описується заданим пропорційно-диференціальним рівнянням, яке зв’язує аналогові сигнали х(t) на вході і y(t) на виході системи. МПП був побудований на МП КР580ВМ80. Для заданого рівняння системи регулювання було здійснено його часткову дискретизацію і отримано відповідне рівняння цифрового фільтра (ЦФ). Побудовано аналогову схему, яка відображає задане рівняння. Складено і детально описано структурну схему МПП. Складено схему алгоритму функціонування МПП. Обрано типи АЦП і ЦАП. Складено принципові схеми підключення АЦП і ЦАП до МПП. Складено на мові Асемблер мікропроцесора КР580ВМ80 програму вводу інформації через АЦП і виводу через ЦАП. Складено програму відповідної цифрової обробки інформації. Детально описано фрагмент принципової схеми реалізації функціонального вузла ПЗП. Практично засвоєно та удосконалено навики розробки мікропроцесорних систем. СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ. 1. Алексенко А.Г., Галицин А.А., Иванников А.Д. Проектирование радиоэлектронной апаратуры на микропроцесорах: Програмирование, типовые решения, методы отладки.-М.:Радио и связь,1984. 2. Майоров В.Г., Гаврилов А.И., Практический курс программирования микропроцессорных систем.-М:Машиностроение,1989. 3. Федорков Б.Г., Телец В.А. Микросхемы ЦАП и АЦП: функционирование, параметры, применение.-М:Енергоатомиздат,1990. 4. Коффон Д. Технические средства микропроцессорных систем: Практический курс.-М:Мир,1983. 5. Фолкенберри Л. Применение операционных усилителей и линейных ИС. – М:Мир,1985. 6. Полупроводниковые БИС запоминающих устойств: Справочник/В.В.Баранов, Н.И.Бекин,А.Ю.Гордунов и др.-М:Радио и связь,1987. ДОДАТОК 1.  ДОДАТОК 2. 
Антиботан аватар за замовчуванням

01.01.1970 03:01-

Коментарі

Ви не можете залишити коментар. Для цього, будь ласка, увійдіть або зареєструйтесь.

Ділись своїми роботами та отримуй миттєві бонуси!

Маєш корисні навчальні матеріали, які припадають пилом на твоєму комп'ютері? Розрахункові, лабораторні, практичні чи контрольні роботи — завантажуй їх прямо зараз і одразу отримуй бали на свій рахунок! Заархівуй всі файли в один .zip (до 100 МБ) або завантажуй кожен файл окремо. Внесок у спільноту – це легкий спосіб допомогти іншим та отримати додаткові можливості на сайті. Твої старі роботи можуть приносити тобі нові нагороди!
Нічого не вибрано
0%

Оголошення від адміністратора

Антиботан аватар за замовчуванням

Подякувати Студентському архіву довільною сумою

Admin

26.02.2023 12:38

Дякуємо, що користуєтесь нашим архівом!