СИНТЕЗ СИГНАЛІВ ЗА ФУР’Є.

Інформація про навчальний заклад

ВУЗ:
Національний університет Львівська політехніка
Інститут:
Не вказано
Факультет:
Не вказано
Кафедра:
Кафедра теоретичної радіотехніки та радіовимірювання (ТРР)

Інформація про роботу

Рік:
2003
Тип роботи:
Методичні вказівки
Предмет:
Сигнали та процеси в радіоелектроніці

Частина тексту файла (без зображень, графіків і формул):

Міністерство освіти і науки України Національний університет “Львівська політехніка” СИНТЕЗ СИГНАЛІВ ЗА ФУР’Є Методичні вказівки до лабораторної роботи № 4 з предмету “Сигнали та процеси в радіоелектроніці”, для студентів базового напряму “Радіотехніка” ЗАТВЕРДЖЕНО на засіданні кафедри “Теоретична радіотехніка та радіовимірювання” Протокол № 4 від 27 листопада 2003 р. Львів - 2003 Синтез сигналів за Фур’є. Методичні вказівки до лабораторної роботи №4 з предмету “Сигнали та процеси в радіоелектроніці” для студентів базового напряму “Радіотехніка” /Упорядники: Желяк Р.І., Мелень М.В.- Львів: НУ ЛП, 2003. - с. 10. Упорядники: Желяк Р.І., доц., канд. техн. наук, Мелень М.В., доц., канд. техн. наук. Рецензенти: Волочій Б.Ю., доц., канд. техн. наук, Бондарєв А.П., доц., канд. техн. наук. Відповідальний за випуск: Надобко О.В., доц., канд. техн. наук. © Желяк Р.І., Мелень М.В., 2003 1. МЕТА РОБОТИ Метою роботи е вивчення методів аналізу і синтезу складних сигналів за допомогою систем ортогональних елементарних гармонічних функцій. 2. ОСНОВНІ ПОЛОЖЕННЯ З математики відомо, що довільну складну функцію  EMBED Equation.3  завжди можна подати у вигляді суми простих (елементарних) функцій  EMBED Equation.3 , тобто подати її у вигляді узагальненого ряду Фур’є:  EMBED Equation.3 , (1) де  EMBED Equation.3 - коефіцієнти узагальненого ряду Фур’є – значення проекцій складної функції  EMBED Equation.3  на координатні осі багатовимірного простору, що задаються простими елементарними функціями  EMBED Equation.3 . З (1) випливає, що будь який складний сигнал  EMBED Equation.3  можна точно описати безмежною сумою зважених ортогональних елементарних сигналів  EMBED Equation.3 , тобто розкласти його в узагальнений ряд Фур’є. Проте при практичному розв’язку багатьох інженерних задач замість ряду (1) використовують вкорочений ряд Фур’є:  EMBED Equation.3 , (2) який описує заданий сигнал з деякою допустимою похибкою, середньоквадратичне значення якої залежить від числа врахованих коефіцієнтів ряду N і оцінюється виразом:  EMBED Equation.3  EMBED Equation.3  (3) Величина  називається середньою квадратичною похибкою апроксимації (подання) рядом EMBED Equation.3 заданого сигналу s(t). Якщо для неперервного сигналу можна вибрати ai так, щоб при збільшенні кількості членів ряду величина  ставала достатньо малою, то сукупність ортого-нальних функцій {fi (t)} називається повною, а ряд (2) в цьому випадку називається збіжним в середньому. В загальному випадку елементарні функції  EMBED Equation.3  можуть бути довільними, проте, якщо потрібно забезпечити умову взаємної незалежності значень коефіці-єнтів  EMBED Equation.3  узагальненого ряду Фур’є, елементарні функції  EMBED Equation.3  повинні задовольняти умову ортогональності на деякому відрізку часу (t1, t2):  EMBED Equation.3 , (4) де  EMBED Equation.3  У цьому випадку сукупність функцій називають системою ортогональних функцій на відрізку (t1, t2). Якщо при цьому додатково виконується умова  EMBED Equation.3 , (5) то систему елементарних функцій { EMBED Equation.3 } називають ортонормованою. В даному випадку, для періодичних сигналів  EMBED Equation.3  (n – довільне ціле число; Т – період повторення) елементарні функції повинні задовольняти умову періодичності  EMBED Equation.3 . Неважко довести, що використання при розкладі сигналу  EMBED Equation.3  в ряд (1) елементарних ортогональних або ортонормованих функцій  EMBED Equation.3  дозволяє одноз-начно визначати коефіцієнти аі ряду у вибраному координатному базисі:  EMBED Equation.3 . (6) Аналіз показує, що визначення коефіцієнтів ряду аі за формулою (4) забезпечує мінімальну середню квадратичну похибку апроксимації сигналу рядом (1) або (2). Вибір виду ортогональних функцій, за якими проводиться розклад складного сигналу на суму елементарних сигналів залежить від форми і властивостей склад-ного сигналу. Так для періодичних сигналів, миттєве значення яких монотонно змінюється в часі, найчастіше використовується система гармонічних функцій з кратними аргументами ( EMBED Equation.3  і (або)  EMBED Equation.3 ,  EMBED Equation.3 ) та система експоненціальних функцій з кратними комплексними аргументами ( EMBED Equation.3 ,  EMBED Equation.3 ). У цьому випадку сигнал  EMBED Equation.3  може бути поданий рядом:  EMBED Equation.3  або  EMBED Equation.3 , (7) в яких коефіцієнти  EMBED Equation.3 ,  EMBED Equation.3 ,  EMBED Equation.3  та  EMBED Equation.3  розраховуються за допомогою формул:  EMBED Equation.3 ;  EMBED Equation.3 ;  EMBED Equation.3 ; (8)  EMBED Equation.3 ;  EMBED Equation.3 ;  EMBED Equation.3 . Ряд (7) подає коливання  EMBED Equation.3  у вигляді суми постійної складової ( EMBED Equation.3 ,  EMBED Equation.3  або  EMBED Equation.3 ), та гармонічних коливань (з амплітудами  EMBED Equation.3 ,  EMBED Equation.3 , EMBED Equation.3  і початковими фазами  EMBED Equation.3 ) з кратними частотами, які називають гармоніками. Найнижчу частоту коливань має перша (основна) гармоніка. Її значення визначається періодом повторення сигналу -  EMBED Equation.3 . На рис. 1, б, в, г штриховими лініями показані часові залежності окремих гар-монічних складових з кратними частотами, а суцільними лініями - результат сумування цих гармонік (на рис. 1, б – сума першої і третьої гармонік, на рис. 1, в сума доповнена п’ятою, а на рис. 1, г - сьомою гармоніками). Рис. 1. Часові залежності періодичної послідовності прямокутних імпульсів –а) та суми вкороченого ряду Фур’є для k=3 – б); k=5 – в); та k=7 – г). З поданих рисунків випливає, що із збільшенням кількості гармонік сума ряду наближається до заданого сигналу  EMBED Equation.3  усюди, крім точок розриву сигналу  EMBED Equation.3 , де утворюється викид. При  EMBED Equation.3  величина цього викиду лише на 18% відрізняється від заданого сигналу. Згаданий дефект збіжності ряду в математиці отримав назву “явище Гібса”. Зауважимо, що при відсутності стрибкоподібних змін ряд Фур’є швидко збігається до  EMBED Equation.3  в усіх точках. Доцільно відзначити, що подібним способом можна синтезувати і сигнали з різними видами модуляції. У цьому випадку потрібно сумувати гармонічні сигнали з частотами, з яких складається відповідний сигнал. Наприклад, для синтезу сигналу з однотональною амплітудною модуляцією потрібно просумувати три гармонічних коливання з частотами f0 - , f0 та f0 + . Для синтезу сигналу з однотональною односмуговою амплітудною модуляцією потрібно просумувати два гармонічних коливання з частотами f0 та f0 +  або f0 -  та f0. Для синтезу сигналу з однотональною балансною амплітудною модуляцією потрібно просумувати два гармонічних коливання з частотами f0 +  та f0 - . 6. КОНТРОЛЬНІ ПИТАННЯ 1. Яка система функцій називається ортогональною системою? 2. Яка система функцій називається ортонормованою системою? 3. Які системи ортогональних функцій Ви знаєте? 4. Як формується система ортогональних гармонічних функцій? 5. Як вибираються амплітуди (коефіцієнти) окремих функцій при синтезі заданого сигналу? 7. Як за допомогою гармонічних функцій можна синтезувати сигнал заданої форми? 8. Чи можна варіацією амплітуд (коефіцієнтів) окремих функцій покращити точність синтезу сигналу? 9. Від чого залежить точність синтезу заданого сигналу? 3. РОЗРАХУНКОВЕ ЗАВДАННЯ На підставі викладених теоретичних положень потрібно: 1. розрахувати спектри в базисі гармонічних функцій (до 12-ти коефіцієнтів ряду) і побудувати спектральні діаграми одного із наступних заданих викладачем сигналів: а. EMBED Equation.3; б.  EMBED Equation.3  в. EMBED Equation.3; г.  EMBED Equation.3  2. Використовуючи результати аналізу, просумувати з відповідними коефі-цієнтами гармонічні функцї і нарисувати графіки утвореного (синтезова-ного) сигналу. 3. Оцінити абсолютну похибку синтезу заданого сигналу як різницю між зада-ним сигналом і частковими сумами елементарних складових. Різницю доцільно визначати в 20-ти рівновіддалених точках в межах періоду повторення заданого сигналу. Максимальне значення похибки синтезу сигналу при цьому буде дорівнювати модулю максимальної різниці. 4. Визначити середню квадратичну похибку синтезованого сигналу, як відно-шення суми квадратів різниць до кількості точок, в яких вони визначались. 5. ЕКСПЕРИМЕНТАЛЬНА ЧАСТИНА Експериментальна частина передбачає лабораторну перевірку результатів правильності розрахунків для заданих викладачем сигналів. Для цього використо-вується спеціалізований лабораторний макет (рис. 2), в склад якого входять 12 генераторів гармонічних сигналів, а також 12-ти входовий суматор сигналів. 1. На передню панель макета виведені: 2. вимикач живлення; 3. перемикач виду генерованих функцій; 4. ручки потенціометрів, за допомогою яких встановлюються потрібні амплі-туди функцій; 5. ручки потенціометрів, за допомогою яких встановлюються потрібні почат-кові фази гармонічних функцій; 6. гнізда, які дозволяють побачити осцилограми вибраних функцій; 7. гніздо синхронізації осцилографа; 8. гніздо для спостереження сигналу на виході суматора. Після перевірки викладачем результатів розрахунків потрібно: 1. ввімкнути живлення лабораторного макету і перемикачем виду функцій вста-новити режим генерування гармонічних функцій (Фур’є); 2. під’єднати вхід синхронізації осцилографа до гнізда “синхронізація” на лабо-раторному макеті і ввімкнути режим синхронізації “зовнішня”; 3. за допомогою ручок потенціометрів “Амплітуда” встановити необхідні амплітуди окремих функцій; 4. за допомогою ручок потенціометрів “Фаза” встановити необхідні початкові фази. Встановлювати амплітуди та фази окремих складових слід не всі од- ночасно, а послідовно: спочатку першої, потім другої і т. д., контролюючи при цьому осцилографом або вольтметром рівень окремих  Рис. 2. Передня панель макета. складових на відповідних контрольних гніздах макету; 5. під’єднати вхід вертикальної розгортки осцилографа до гнізда для спос-спостереження сигналу на виході суматора і зрисувати з екрана осци-лографа синтезований сигнал, строго притримуючись масштабу зобра-ження. Після цього потрібно визначити похибку синтезу; 6. Міняючи в невеликих границях амплітуди (фази) окремих функцій від-носно розрахованих значень, оцінити їх вплив на форму вихідного сигналу і величину похибки синтезу. 6. ЗМІСТ ЗВІТУ Звіт по лабораторній роботі повинен містити: 1. Результати розрахунків і графіки синтезованого сигналу за допомогою гармонічних функцій. 2. Графіки експериментально синтезованих сигналів, акуратно зрисованих з екрана осцилографа із додержанням масштабу. 3. Результати оцінки точності синтезу. 4. Порівняння розрахункових і експериментальних даних. 5. Висновки. 7. ЛІТЕРАТУРА 1. Гоноровский И.С. Радиотехнические цепи и сигналы. - М.: Советское радио, 1977, с. 429-444. 2. Клодовский Д.Д. Теория передачи сигналов. - М.: Связь, 1973, с. 64-70. 3. Френко Л. Теория сигналов. - М.: Советское радио, 1974, с. 61-68. Навчальне видання Синтез сигналів за Фур’є. Методичні вказівки до лабораторної роботи № 4 з предмету “Сигнали та процеси в радіоелектроніці” для студентів базового напряму “Радіотехніка”. Упорядники: Желяк Р.І., Мелень М.В.
Антиботан аватар за замовчуванням

01.01.1970 03:01-

Коментарі

Ви не можете залишити коментар. Для цього, будь ласка, увійдіть або зареєструйтесь.

Ділись своїми роботами та отримуй миттєві бонуси!

Маєш корисні навчальні матеріали, які припадають пилом на твоєму комп'ютері? Розрахункові, лабораторні, практичні чи контрольні роботи — завантажуй їх прямо зараз і одразу отримуй бали на свій рахунок! Заархівуй всі файли в один .zip (до 100 МБ) або завантажуй кожен файл окремо. Внесок у спільноту – це легкий спосіб допомогти іншим та отримати додаткові можливості на сайті. Твої старі роботи можуть приносити тобі нові нагороди!
Нічого не вибрано
0%

Оголошення від адміністратора

Антиботан аватар за замовчуванням

Подякувати Студентському архіву довільною сумою

Admin

26.02.2023 12:38

Дякуємо, що користуєтесь нашим архівом!