Архитектура ЭВМ.

Інформація про навчальний заклад

ВУЗ:
Курский государственный медицинский университет
Інститут:
Не вказано
Факультет:
Не вказано
Кафедра:
Кафедра інформатики та обчислювальної техніки

Інформація про роботу

Рік:
2009
Тип роботи:
Інші
Предмет:
Інформатика

Частина тексту файла (без зображень, графіків і формул):

ГОУ ВПО "Курский Государственный Медицинский Университет" Кафедра Информатики и вычислительной техники Реферат по информатике на тему "Архитектура ЭВМ" Выполнил: студент 1-го курса Проверил: Кибец Ольга Ивановна Курск, 2009 План Введение Магистрально-модульный принцип построения компьютера Структура персонального компьютера Внутреннее устройство персонального компьютера Заключение Литература Введение Во все времена людям нужно было считать. В туманном доисторическом прошлом они считали на пальцах или делали насечки на костях. Примерно около 4000 лет назад, на заре человеческой цивилизации, были изобретены уже довольно сложные системы счисления, позволявшие осуществлять торговые сделки, рассчитывать астрономические циклы, проводить другие вычисления. Несколько тысячелетий спустя, появились первые ручные вычислительные инструменты. А в наши дни сложнейшие вычислительные задачи, как и множество других операций, казалось бы, не связанных с числами, решаются при помощи "электронного мозга", который называется компьютером. Специалисты, наверное, не преминут заметить, что компьютер - это не мозг (по крайней мере пока - уточнят некоторые). Это просто-напросто еще один инструмент, еще одно устройство, придуманное для того, чтобы облегчить наш труд или усилить нашу власть над природой. Ведь при всем его кажущемся великолепии современный компьютер обладает, по существу, одним-единственным талантом реагировать с молниеносной быстротой на импульсы электрического напряжения. Истинное величие заключено в человеке, его гении, который нашел способ преобразовывать разнообразную информацию, поступающую из реального мира, в последовательность нулей и единиц двоичного кода, т.е. записывать ее на математическом языке, идеально подходящем для электронных схем компьютера. И все же, пожалуй, ни одна другая машина в истории не привнесла в наш мир столь быстрых и глубоких изменений. Благодаря компьютерам стали возможными такие знаменательные достижения, как посадка аппаратов на поверхность Луны и исследование планет Солнечной системы. Компьютеры создают тысячи удобств и услуг в нашей повседневной жизни. Они управляют анестезионной аппаратурой в операционных, помогают детям учиться в школах, "изобретают" видеотрюки для кинематографа. Компьютеры взяли на себя функции пишущих машинок в редакциях газет и счетных аппаратов в банках. Они улучшают качество телевизионного изображения, управляют телефонными станциями и определяют цену покупок в кассе универсального магазина. Иными словами, они столь прочно вошли в современную жизнь, что обойтись без них практически невозможно. Именно поэтому важно знать основные принципы работы и устройства компьютера и его основных составных. Именно эти цели для исследования я преследовал в своем реферате. Магистрально-модульный принцип построения компьютера  В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип. Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) принцип обмена информацией между устройствами. Магистраль включает в себя три многоразрядные шины: шину данных, шину адреса и шину управления. Шина данных. По этой шине данные передаются между различными устройствами. Разрядность шины данных определяется разрядностью процессора, т.е. количеством двоичных разрядов, которые процессор обрабатывает за один такт. За 25 лет, со времени создания первого персонального компьютера (1975 г), разрядность шины данных увеличилась с 8 до 64 бит. Шина адреса. Каждая ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине. Разрядность шины адреса определяет адресное пространство процессора, т.е. количество ячеек оперативной памяти, которые могут иметь уникальные адреса. Количество адресуемых ячеек памяти можно рассчитать по формуле: N=2I, где I - разрядность шины адреса. В первых персональных компьютерах разрядность шины адреса составляла 16 бит, а количество адресуемых ячеек памяти -  В современных персональных компьютерах разрядность шины адреса составляет 32 бита, а максимально возможное количество адресуемых ячеек памяти равно N=232=4 294 967 296 Шина управления. По шине управления передаются сигналы, определяющие характер обмена информацией по магистрали. Сигналы управления определяют, какую операцию - считывание или запись информации из памяти - нужно производить, синхронизируют обмен информацией между устройствами и т.д. Структура персонального компьютера Архитектура компьютера обычно определяется совокупностью ее свойств, существенных для пользователя. Основное внимание при этом уделяется структуре и функциональным возможностям машины, которые можно разделить на основные и дополнительные. Основные функции определяют назначение ЭВМ: обработка и хранение информации, обмен информацией с внешними объектами. Дополнительные функции повышают эффективность выполнения основных функций: обеспечивают эффективные режимы ее работы, диалог с пользователем, высокую надежность и др. Названные функции ЭВМ реализуются с помощью ее компонентов: аппаратных и программных средств. Структура компьютера - это некоторая модель, устанавливающая состав, порядок и принципы взаимодействия входящих в нее компонентов. Персональный компьютер-это настольная или переносная ЭВМ, удовлетворяющая требованиям общедоступности и универсальности применения. Достоинствами ПК являются: малая стоимость, находящаяся в пределах доступности для индивидуального покупателя; автономность эксплуатации без специальных требований к условиям окружающей среды; гибкость архитектуры, обеспечивающая ее адаптивность к разнообразным применениям в сфере управления, науки, образования, в быту; "дружественность" операционной системы и прочего программного обеспечения, обусловливающая возможность работы с ней пользователя без специальной профессиональной подготовки; высокая надежность работы (более 5 тыс. ч наработки на отказ). Рассмотрим состав и назначение основных блоков ПК. Микропроцессор (МП). Это центральный блок ПК, предназначенный для управления работой всех блоков машины и для выполнения арифметических и логических операций над информацией. В состав микропроцессора входят: устройство управления (УУ) - формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполняемой операции и результатами предыдущих операций; формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки ЭВМ; опорную последовательность импульсов устройство управления получает от генератора тактовых импульсов; арифметико-логическое устройство (АЛУ) - предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией (в некоторых моделях ПК для ускорения выполнения операций к АЛУ подключается дополнительный математический сопроцессор); микропроцессорная память (МПП) - служит для кратковременного характера, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины, ибо основная память (ОП) не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессор. Регистры - быстродействующие ячейки памяти различной длины (в отличие от ячеек ОП, имеющих стандартную длину 1 байт и более низкое быстродействие); интерфейсная система микропроцессора - реализует сопряжение и связь с другими устройствами ПК; включает в себя внутренний интерфейс МП, буферные запоминающие регистры и схемы управления портами ввода-вывода (ПВВ) и системной шиной. Интерфейс (interface) - совокупность средств сопряжения и связи устройств компьютера, обеспечивающая их эффективное взаимодействие. Порт ввода-вывода (I/O - Input/Output port) - аппаратура сопряжения, позволяющая подключить к микропроцессору другое устройство ПК.  Генератор тактовых импульсов. Он генерирует последовательность электрических импульсов; частота генерируемых импульсов определяет тактовую частоту машины. Промежуток времени между соседними импульсами определяет время одного такта работы машины или просто такт работы машины. Частота генератора тактовых импульсов является одной из основных характеристик персонального компьютера и во многом определяет скорость его работы, ибо каждая операция в машине выполняется за определенное количество тактов. Системная шина. Это основная интерфейсная система компьютера, обеспечивающая сопряжение и связь всех его устройств между собой. Системная шина включает в себя: кодовую шину данных (КШД), содержащую провода и схемы сопряжения для параллельной передачи всех разрядов числового кода (машинного слова) операнда; кодовую шину адреса (КША), включающую провода и схемы сопряжения для параллельной передачи всех разрядов кода адреса ячейки основной памяти или порта ввода-вывода внешнего устройства; кодовую шину инструкций (КШИ), содержащую провода и схемы сопряжения для передачи инструкций (управляющих сигналов, импульсов) во все блоки машины; шину питания, имеющую провода и схемы сопряжения для подключения блоков ПК к системе энергопитания. Системная шина обеспечивает три направления передачи информации: между микропроцессором и основной памятью; между микропроцессором и портами ввода-вывода внешних устройств; между основной памятью и портами ввода-вывода внешних устройств (в режиме прямого доступа к памяти). Не блоки, а точнее их порты ввода-вывода, через соответствующие унифицированные разъемы (стыки) подключаются к шине единообразно: Непосредственно или через контроллеры (адаптеры). Управление системной шины осуществляется микропроцессором либо непосредственно, либо, что чаще, через дополнительную микросхему - контроллер шины, формирующий основные сигналы управления. Основная память (ОП). Она предназначена для хранения и оперативного обмена информацией с прочими блоками машины. ОП содержит два вида запоминающих устройств: постоянное запоминающее устройство (ПЗУ) и оперативное запоминающее устройство (ОЗУ). ПЗУ служит для хранения неизменяемой (постоянной) программной и справочной информации, позволяет оперативно только считывать хранящуюся в нем информацию (изменить информацию в ПЗУ нельзя). ОЗУ предназначено для оперативной записи, хранения и считывания информации (программ и данных), непосредственно участвующей в информационно - вычислительном - процессе, выполняемом ПК в текущий период времени. Главными достоинствами оперативной памяти являются ее высокое быстродействие и возможность обращения к каждой ячейке памяти отдельно (прямой адресный доступ к ячейке). В качестве недостатка ОЗУ следует отменить невозможность сохранения информации в ней после выключения питания машины (энергозависимость). Внешняя память. Она относится к внешним устройствам ПК и используется для долговременного хранения любой информации, которая может когда-либо потребоваться для решения задач. В частности, во внешней памяти хранится все программное обеспечение компьютера. Внешняя память содержит разнообразные виды запоминающих устройств, но наиболее распространенными, имеющимися практически на любом компьютере, являются накопители на жестких (HDD) и гибких (HD) магнитных дисках. Назначение этих накопителей - хранение больших объемов информации, запись и выдача хранимой информации по запросу в оперативное запоминающее устройство. В качестве устройств внешней памяти используются также запоминающие устройства на магнитной дискете, накопители на оптических дисках (CD-ROM-Compact Disk Read Only, DVD, Memory-компакт-диск с памятью, только читаемой) и др. Источник питания. Это блок, содержащий системы автономного и сетевого энергопитания ПК. Таймер. Это внутримашинные электронные часы, обеспечивающие при необходимости автоматический съем текущего момента времени (год, месяц, часы, минуты, секунды и доли секунд). Таймер подключается к автономному источнику питания - аккумулятору и при отключение машины от сети продолжает работать. Внешние устройства (ВУ). Это важнейшая составная часть любого вычислительного комплекса. Достаточно сказать, что по стоимости ВУ иногда составляют 50-80% всего ПК. ОТ состава и характеристик ВУ во многом зависят возможность и эффективность применения ПК в системах управления и в народном хозяйстве в целом. ВУ ПК обеспечивают взаимодействие машины с окружающей средой пользователями, объектами управления и другими ЭВМ. ВУ весьма разнообразны и могут быть классифицированы по ряду признаков. Так, по назначению можно выделить следующие виды ВУ: внешние запоминающие устройства (ВЗУ) или внешняя память ПК; диалоговые средства пользователя; устройства ввода информации; устройства вывода информации; средства связи и телекоммуникации. Диалоговые средства пользователя включают в свой состав видеомониторы (дисплеи), реже пультовые пишущие машинки (принтеры с клавиатурой) и устройства речевого ввода-вывода информации. Видеомонитор (дисплей) - устройство для отображения вводимой и выводимой из ПК информации. Устройства речевого ввода-вывода относятся к средствам мультимедиа. Устройства речевого ввода - это различные микрофонные акустические системы, "звуковые мыши", например, со сложным программным обеспечением, позволяющим распознавать произносимые человеком буквы и слова, идентифицировать их и закодировать. Устройства речевого вывода - это различные синтезаторы звука, выполняющие преобразования цифровых кодов в буквы и слова, воспроизводимые через динамики или звуковые колонки, подсоединенные к компьютеру. К устройствам ввода информации относятся: клавиатура - устройство для ручного ввода числовой, текстовой и управляющей информации в ПК; графические планшеты (диджитайзеры) - для ручного ввода графической информации, изображений путем перемещения по планшету специального указателя (пера); при перемещении пера автоматически выполняются считывание координат его местоположения и ввод этих координат в ПК; сканеры - для автоматического считывания с бумажных носителей и ввода в ПК машинописных текстов, графиков, рисунков, чертежей; в устройстве кодирования сканера в текстовом режиме считанные символы после сравнения с эталонными контурами специальными программами преобразуются в коды ASCII, а в графическом режиме считанные графики и чертежи преобразуются в последовательности двухмерных координат; манипуляторы (устройства указания): джойстик - рычаг, мышь, трекбол-шар в оправе, световое перо и др. - для ввода графической информации на экран дисплея путем управления движением курсора по экрану с последующим кодированием координат курсора и вводом их в ПК; сенсорные экраны - для ввода отдельных элементов изображения, программ или команд с полиэкрана дисплея в ПК. К устройствам вывода информации относятся: Принтеры - печатающие устройства для регистрации информации на бумажный носитель; графопостроители (плоттеры) - для вывода графической информации (графиков, чертежей, рисунков) из ПК на бумажный носитель; плоттеры бывают векторные с вычерчиванием изображения с помощью пера и растровые: термографические, электростатические, струйные и лазерные. По конструкции плоттеры подразделяются на планшетные и барабанные. Основные характеристики всех плоттеров примерно одинаковые: скорость вычерчивания-100-1000 мм/с, у лучших моделей возможны цветное изображение и передача полутонов; наибольшая разрешающая способность и четкость изображения у лазерных плоттеров, но они самые дорогие. Устройства связи и телекоммуникации для связи с приборами и другими средствами автоматизации (согласователи интерфейсов, адаптеры, цифроаналоговые и аналого-цифровые преобразователи и т.п.) и для подключения ПК к каналам связи, к другим ЭВМ и вычислительным сетям (сетевые интерфейсные платы, "стыки", мультиплексоры передачи данных, модемы). Внутреннее устройство персонального компьютера Процессор. Центральный процессор (ЦП; англ. central processing unit, CPU, дословно - центральное вычислительное устройство) - исполнитель машинных инструкций, часть аппаратного обеспечения компьютера или программируемого логического контроллера, отвечающий за выполнение операций, заданных программами. Современные ЦП, выполняемые в виде отдельных микросхем (чипов), реализующих все особенности, присущие данного рода устройствам, называют микропроцессорами. С середины 1980-х последние практически вытеснили прочие виды ЦП, вследствие чего термин стал всё чаще и чаще восприниматься как обыкновенный синоним слова "микропроцессор". Тем не менее, это не так: центральные процессорные устройства некоторых суперкомпьютеров даже сегодня представляют собой сложные комплексы больших (БИС) и сверхбольших интегральных схем (СБИС). Изначально термин Центральное процессорное устройство описывал специализированный класс логических машин, предназначенных для выполнения сложных компьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 1960-е годы. Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде. Ранние ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (память программ и данных, интерфейсы, порты ввода/вывода, таймеры, и др.). Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели. Большинство современных процессоров для персональных компьютеров в общем основаны на той или иной версии циклического процесса последовательной обработки информации, изобретённого Джоном фон Нейманом. Д. фон Нейман придумал схему постройки компьютера в 1946 году. Важнейшие этапы этого процесса приведены ниже. В различных архитектурах и для различных команд могут потребоваться дополнительные этапы. Например, для арифметических команд могут потребоваться дополнительные обращения к памяти, во время которых производится считывание операндов и запись результатов. Отличительной особенностью архитектуры фон Неймана является то, что инструкции и данные хранятся в одной и той же памяти. Этапы цикла выполнения: Процессор выставляет число, хранящееся в регистре счётчика команд, на шину адреса, и отдаёт памяти команду чтения; Выставленное число является для памяти адресом; память, получив адрес и команду чтения, выставляет содержимое, хранящееся по этому адресу, на шину данных, и сообщает о готовности; Процессор получает число с шины данных, интерпретирует его как команду (машинную инструкцию) из своей системы команд и исполняет её; Если последняя команда не является командой перехода, процессор увеличивает на единицу (в предположении, что длина каждой команды равна единице) число, хранящееся в счётчике команд; в результате там образуется адрес следующей команды; Снова выполняется п.1. Данный цикл выполняется неизменно, и именно он называется процессом (откуда и произошло название устройства). Во время процесса процессор считывает последовательность команд, содержащихся в памяти, и исполняет их. Такая последовательность команд называется программой и представляет алгоритм работы процессора. Очерёдность считывания команд изменяется в случае, если процессор считывает команду перехода - тогда адрес следующей команды может оказаться другим. Другим примером изменения процесса может служить случай получения команды останова или переключение в режим обработки прерывания. Команды центрального процессора являются самым нижним уровнем управления компьютером, поэтому выполнение каждой команды неизбежно и безусловно. Не производится никакой проверки на допустимость выполняемых действий, в частности, не проверяется возможная потеря ценных данных. Чтобы компьютер выполнял только допустимые действия, команды должны быть соответствующим образом организованы в виде необходимой программы. Скорость перехода от одного этапа цикла к другому определяется тактовым генератором. Тактовый генератор вырабатывает импульсы, служащие ритмом для центрального процессора. Частота тактовых импульсов называется тактовой частотой. В данное время существует несколько типов архитектуры процессоров CISC-процессоры. Complex Instruction Set Computer - вычисления со сложным набором команд. Процессорная архитектура, основанная на усложнённом наборе команд. Типичными представителями CISC является семейство микропроцессоров Intel x86 (хотя уже много лет эти процессоры являются CISC только по внешней системе команд). RISC-процессоры. Reduced Instruction Set Computer - вычисления с сокращённым набором команд. Архитектура процессоров, построенная на основе сокращённого набора команд. Характеризуется наличием команд фиксированной длины, большого количества регистров, операций типа регистр-регистр, а также отсутствием косвенной адресации. Концепция RISC разработана Джоном Коком (John Cocke) из IBMResearch, название придумано Дэвидом Паттерсоном (David Patterson). Среди первых реализаций этой архитектуры были процессоры MIPS, PowerPC, SPARC, Alpha, PA-RISC. В мобильных устройствах широко используются ARM-процессоры. MISC-процессоры. Minimum Instruction Set Computer - вычисления с минимальным набором команд. Дальнейшее развитие идей команды Чака Мура, который полагает, что принцип простоты, изначальный для RISC-процессоров, слишком быстро отошёл на задний план. В пылу борьбы за максимальное быстродействие, RISC догнал и перегнал многие CISC процессоры по сложности. Архитектура MISC строится настековой вычислительной модели с ограниченным числом команд (примерно 20-30 команд). Многоядерные процессоры. Содержат несколько процессорных ядер в одном корпусе (на одном или нескольких кристаллах). Процессоры, предназначенные для работы одной копии операционной системы на нескольких ядрах, представляют собой высокоинтегрированную реализацию мультипроцессорности. Двухъядерность процессоров включает такие понятия, как наличие логических и физических ядер: например двухъядерный процессор Intel Core Duo состоит из одного физического ядра, которое в свою очередь разделено на два логических. Процессор Intel Core 2 Quad состоит из четырёх физических ядер, что существенно влияет на скорость его работы. 10 сентября 2007 года были выпущены в продажу нативные (в виде одного кристалла) четырёхъядерные процессоры для серверовAMD Opteron, имевшие в процессе разработки кодовое название AMD Opteron Barcelona. 19 ноября 2007 года вышел в продажу четырёхъядерный процессор для домашних компьютеров AMD Phenom. Эти процессоры реализуют новую микроархитектуру K8L (K10). 27 сентября 2006 года Intel продемонстрировала прототип 80-ядерного процессора. Предполагается, что массовое производство подобных процессоров станет возможно не раньше перехода на 32-нанометровый техпроцесс, а это в свою очередь ожидается к 2010 году. 26 октября 2009 года Tilera анонсировала 100-ядерный процессор широкого назначения серии TILE-Gx. Каждое процессорное ядро представляет собой отдельный процессор с кэшем 1, 2 и 3 уровней. Ядра, память и системная шина связаны посредством технологии Mesh Network. Процессоры производятся по 40-нм нормам техпроцесса и работают на тактовой частоте 1,5 ГГц. Выпуск 100-ядерных процессоров назначен на начало 2011 года. На данный момент массово доступны двух-, четырёх - и шестиядерные процессоры, в частности Intel Core 2 Duo на 65-нм ядре Conroe (позднее на 45-нм ядре Wolfdale) и Athlon 64 X2 на базе микроархитектуры K8. В ноябре 2006 года вышел первый четырёхъядерный процессор Intel Core 2 Quad на ядре Kentsfield, представляющий собой сборку из двух кристаллов Conroe в одном корпусе. Потомком этого процессора стал Intel Core 2 Quad на ядре Yorkfield (45 нм), архитектурно схожем с Kentsfield но имеющем больший объём кэша и рабочие частоты. Компания AMD пошла по собственному пути, изготовляя четырёхъядерные процессоры единым кристаллом (в отличие от Intel, первые четырехъядерные процессоры которой представляют собой фактически склейку двух двухъядерных кристаллов). Несмотря на всю прогрессивность подобного подхода первый "четырёхъядерник" фирмы, получивший название AMD Phenom X4, получился не слишком удачным. Его отставание от современных ему процессоров конкурента составляло от 5 до 30 и более процентов в зависимости от модели и конкретных задач. [источник не указан 67 дней] К 1-2 кварталу 2009 года обе компании обновили свои линейки четырёхъядерных процессоров. Intel представила семейство Core i7, состоящее из трёх моделей, работающих на разных частотах. Основными изюминками данного процессора является использование трёхканального контроллера памяти (типа DDR-3) и технологии эмулирования восьми ядер (полезно для некоторых специфических задач). Кроме того, благодаря общей оптимизации архитектуры удалось значительно повысить производительность процессора во многих типах задач. Слабой стороной платформы, использующей Core i7, является её чрезмерная стоимость, так как для установки данного процессора необходима дорогая материнская плата на чипсете Intel X58 и трёхканальный набор памяти типа DDR3, также имеющий на данный момент высокую стоимость. Компания AMD в свою очередь представила линейку процессоров Phenom II X4. При её разработке компания учла свои ошибки: был увеличен объём кэша (явно недостаточный у первого "Фенома"), а производство процессора было переведено на 45 нм техпроцесс, позволивший снизить тепловыделение и значительно повысить рабочие частоты. В целом, AMD Phenom II X4 по производительности стоит вровень с процессорами Intel предыдущего поколения (ядро Yorkfield) и весьма значительно отстаёт от Intel Core i7. Однако, принимая во внимание умеренную стоимость платформы на базе этого процессора, его рыночные перспективы выглядят куда более радужно, чем у предшественника. Материнская плата. Материнская плата (англ. motherboard, MB, также используется название англ. mainboard - главная плата; сленг. мама, мать, материнка) - это сложная многослойная печатная плата, на которой устанавливаются основные компоненты персонального компьютера (центральный процессор, контроллер ОЗУ и собственно ОЗУ, загрузочное ПЗУ, контроллеры базовых интерфейсов ввода-вывода). Как правило, материнская плата содержит разъёмы (слоты) для подключения дополнительных контроллеров, для подключения которых обычно используются шины USB, PCI иPCI-Express. Основные компоненты, установленные на материнской плате: ЦПУ. набор системной логики (англ. chipset) - набор микросхем, обеспечивающих подключение ЦПУ к ОЗУ и контроллерам периферийных устройств. Как правило, современные наборы системной логики строятся на базе двух СБИС: "северного" и "южного мостов". Северный мост (англ. Northbridge), MCH (Memory controller hub), системный контроллер - обеспечивает подключение ЦПУ к узлам, использующим высокопроизводительные шины: ОЗУ, графический контроллер. Для подключения ЦПУ к системному контроллеру могут использоваться такие FSB-шины, как Hyper-Transport иSCI. Обычно к системному контроллеру подключается ОЗУ. В таком случае он содержит в себе контроллер памяти. Таким образом, от типа применённого системного контроллера обычно зависит максимальный объём ОЗУ, а также пропускная способность шины памяти персонального компьютера. Но в настоящее время имеется тенденция встраивания контроллера ОЗУ непосредственно в ЦПУ (например, контроллер памяти встроен в процессор в AMD K8 и Intel Core i7), что упрощает функции системного контроллера. В качестве шины для подключения графического контроллера на современных материнских платах используется PCI Express. Ранее использовались общие шины (ISA, VLB, PCI) и шина AGP. Южный мост (англ. Southbridge), ICH (I/O controller hub), периферийный контроллер - содержит контроллеры периферийных устройств (жёсткого диска, Ethernet, аудио), контроллеры шин для подключения периферийных устройств (шины PCI, PCI-Express и USB), а также контроллеры шин, к которым подключаются устройства, не требующие высокой пропускной способности (LPC - используется для подключения загрузочного ПЗУ; также шина LPC используется для подключения мультиконтроллера (англ. Super I/O) - микросхемы, обеспечивающей поддержку "устаревших" низкопроизводительных интерфейсов передачи данных: последовательного и параллельного интерфейсов, контроллера клавиатуры и мыши). Как правило, северный и южный мосты реализуются в виде отдельных СБИС, однако существуют и одночиповые решения. Именно набор системной логики определяет все ключевые особенности материнской платы и то, какие устройства могут подключаться к ней. ОЗУ загрузочное ПЗУ - хранит ПО, которое исполняется сразу после включения питания. Как правило, загрузочное ПЗУ содержит BIOS, однако может содержать и ПО, работающие в рамках EFI. Оперативная память. Оперативная память (также оперативное запоминающее устройство, ОЗУ) - в информатике - память, часть системы памяти ЭВМ, в которую процессор может обратиться за одну операцию (jump, move и т.п.). Предназначена для временного хранения данных и команд, необходимых процессору для выполнения им операций. Оперативная память передаёт процессору данные непосредственно, либо через кеш-память. Каждая ячейка оперативной памяти имеет свой индивидуальный адрес. ОЗУ может изготавливаться как отдельный блок или входить в конструкцию однокристальной ЭВМ или микроконтроллера. На сегодня наибольшее распространение имеют два вида ОЗУ: SRAM (Static RAM). ОЗУ, собранное на триггерах, называется статической памятью с произвольным доступом или просто статической памятью. Достоинство этого вида памяти - скорость. Поскольку триггеры собраны на вентилях, а время задержки вентиля очень мало, то и переключение состояния триггера происходит очень быстро. Данный вид памяти не лишён недостатков. Во-первых, группа транзисторов, входящих в состав триггера, обходится дороже, даже если они вытравляются миллионами на одной кремниевой подложке. Кроме того, группа транзисторов занимает гораздо больше места, поскольку между транзисторами, которые образуют триггер, должны быть вытравлены линии связи. DRAM (Dynamic RAM). Более экономичный вид памяти. Для хранения разряда (бита или трита) используется схема, состоящая из одного конденсатора и одного транзистора (в некоторых вариациях конденсаторов два). Такой вид памяти решает, во-первых, проблему дороговизны (один конденсатор и один транзистор дешевле нескольких транзисторов) и во-вторых, компактности (там, где в SRAM размещается один триггер, то есть один бит, можно уместить восемь конденсаторов и транзисторов). Есть и свои минусы. Во-первых, память на основе конденсаторов работает медленнее, поскольку если в SRAM изменение напряжения на входе триггера сразу же приводит к изменению его состояния, то для того чтобы установить в единицу один разряд (один бит) памяти на основе конденсатора, этот конденсатор нужно зарядить, а для того чтобы разряд установить в ноль, соответственно, разрядить. А это гораздо более длительные операции (в 10 и более раз), чем переключение триггера, даже если конденсатор имеет весьма небольшие размеры. Второй существенный минус - конденсаторы склонны к "стеканию" заряда; проще говоря, со временем конденсаторы разряжаются. Причём разряжаются они тем быстрее, чем меньше их ёмкость. В связи с этим обстоятельством, дабы не потерять содержимое памяти, заряд конденсаторов необходимо регенерировать через определённый интервал времени - для восстановления. Регенерация выполняется путём считывания заряда (через транзистор). Контроллер памяти периодически приостанавливает все операции с памятью для регенерации её содержимого, что значительно снижает производительность данного вида ОЗУ. Память на конденсаторах получила своё название Dynamic RAM (динамическая память) как раз за то, что разряды в ней хранятся не статически, а "стекают" динамически во времени. Таким образом, DRAM дешевле SRAM и её плотность выше, что позволяет на том же пространстве кремниевой подложки размещать больше битов, но при этом её быстродействие ниже. SRAM, наоборот, более быстрая память, но зато и дороже. В связи с этим обычную память строят на модулях DRAM, а SRAM используется для построения, например, кэш-памяти в микропроцессорах. Магнитные накопители. Дискета - портативный магнитный носитель информации, используемый для многократной записи и хранения данных сравнительно небольшого объема. Этот вид носителя был особенно распространён в 1970-х - конце 1990-х годов. Вместо термина "дискета" иногда используется аббревиатура ГМД - "гибкий магнитный диск" (соответственно, устройство для работы с дискетами называется НГМД - "накопитель на гибких магнитных дисках"). Обычно дискета представляет собой гибкую пластиковую пластинку, покрытую ферромагнитным слоем, отсюда английское название "floppy disk" ("гибкий диск"). Эта пластинка помещается в пластмассовый корпус, защищающий магнитный слой от физических повреждений. Оболочка бывает гибкой или жёсткой. Запись и считывание дискет осуществляется с помощью специального устройства - дисковода гибких дисков (флоппи-дисковода). Дискеты обычно имеют функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения. Оптические накопители. Компакт-диск - оптический носитель информации в виде диска с отверстием в центре, информация с которого считывается с помощью лазера. Изначально компакт-диск был создан для цифрового хранения аудио (т. н. Audio-CD), однако в настоящее время широко используется как устройство хранения данных широкого назначения (т. н. CD-ROM, КД-ПЗУ). Аудио-компакт-диски по формату отличаются от компакт-дисков с данными, и CD-плееры обычно могут воспроизводить только их (на компьютере, конечно, можно прочитать оба вида дисков). Встречаются диски, содержащие как аудиоинформацию, так и данные - их можно и послушать на CD-плеере, и прочитать на компьютере. С развитием MP3 производители бытовых CD-плееров и музыкальных центров начали снабжать их возможностью чтения MP3-файлов с CD-ROM’ов. Аббревиатура CD-ROM означает англ. Compact Disc Read Only Memory, что в переводе обозначает компакт-диск только с возможностью чтения. КД-ПЗУ означает "Компакт-диск, постоянное запоминающее устройство". Название CD-ROM часто ошибочно используют для обозначения приводов для чтения компакт-дисков (правильно - CD-ROM Drive, CD-привод). DVD (ди-ви-ди, англ. Digital Versatile Disc - цифровой многоцелевой диск; также англ. Digital Video Disc - цифровой видеодиск) - носитель информации, выполненный в виде дис
Антиботан аватар за замовчуванням

01.01.1970 03:01-

Коментарі

Ви не можете залишити коментар. Для цього, будь ласка, увійдіть або зареєструйтесь.

Ділись своїми роботами та отримуй миттєві бонуси!

Маєш корисні навчальні матеріали, які припадають пилом на твоєму комп'ютері? Розрахункові, лабораторні, практичні чи контрольні роботи — завантажуй їх прямо зараз і одразу отримуй бали на свій рахунок! Заархівуй всі файли в один .zip (до 100 МБ) або завантажуй кожен файл окремо. Внесок у спільноту – це легкий спосіб допомогти іншим та отримати додаткові можливості на сайті. Твої старі роботи можуть приносити тобі нові нагороди!
Нічого не вибрано
0%

Оголошення від адміністратора

Антиботан аватар за замовчуванням

Подякувати Студентському архіву довільною сумою

Admin

26.02.2023 12:38

Дякуємо, що користуєтесь нашим архівом!