АРККОСИНУС
function [ n_data, x, fx ] = arccos_values ( n_data )
%*****************************************************************************80
%
%% ARCCOS_VALUES returns some values of the arc cosine function.
%
% Discussion:
%
% In Mathematica, the function can be evaluated by:
%
% ArcCos[x]
%
% Licensing:
%
% This code is distributed under the GNU LGPL license.
%
% Modified:
%
% 12 June 2007
%
% Author:
%
% John Burkardt
%
% Reference:
%
% Milton Abramowitz, Irene Stegun,
% Handbook of Mathematical Functions,
% National Bureau of Standards, 1964,
% ISBN: 0-486-61272-4,
% LC: QA47.A34.
%
% Stephen Wolfram,
% The Mathematica Book,
% Fourth Edition,
% Cambridge University Press, 1999,
% ISBN: 0-521-64314-7,
% LC: QA76.95.W65.
%
% Parameters:
%
% Input/output, integer N_DATA. The user sets N_DATA to 0 before the
% first call. On each call, the routine increments N_DATA by 1, and
% returns the corresponding data; when there is no more data, the
% output value of N_DATA will be 0 again.
%
% Output, real X, the argument of the function.
%
% Output, real FX, the value of the function.
%
n_max = 12;
fx_vec = [ ...
1.6709637479564564156, ...
1.5707963267948966192, ...
1.4706289056333368229, ...
1.3694384060045658278, ...
1.2661036727794991113, ...
1.1592794807274085998, ...
1.0471975511965977462, ...
0.92729521800161223243, ...
0.79539883018414355549, ...
0.64350110879328438680, ...
0.45102681179626243254, ...
0.00000000000000000000 ];
x_vec = [ ...
-0.1, ...
0.0, ...
0.1, ...
0.2, ...
0.3, ...
0.4, ...
0.5, ...
0.6, ...
0.7, ...
0.8, ...
0.9, ...
1.0 ];
if ( n_data < 0 )
n_data = 0;
end
n_data = n_data + 1;
if ( n_max < n_data )
n_data = 0;
x = 0.0;
fx = 0.0;
else
x = x_vec(n_data);
fx = fx_vec(n_data);
end
return
end