МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ
НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»
ІКТА
кафедра ЗІ
З В І Т
до лабораторної роботи №4
з навчальної дисципліни: «Комп’ютерні мережі»
на тему: «Стек протоколів TCP/IP. IP-адресація»
Виконав: ст. гр. УІ-31
Прийняв:
Львів – 2011
Мета роботи: ознайомитись з стеком протоколів TCP/IP та питанням IP-адресації на основі протоколів IPv4, IPv6, та набути практичні навики при конфігурації мережевих параметрів комп’ютерів та вирішенні проблем, пов’язаних з адресацією цих комп’ютерів при підключенні їх до мережі.
Короткі теоретичні відомості
Набір протоколів TCP/IP (Transmission Control Protocol/Internet Protocol) - це стандартний промисловий набір протоколів, розроблений для глобальних мереж (WAN), який був створений в результаті досліджень мереж з комутацією пакетів агенством DARPA в кінці 60-х - на початку 70-х років. TCP/IP є найбільш широковживаним сімейством мережевих протоколів, оскільки: по-перше, є єдиним незалежним від платформ набором протоколів; по-друге, це єдиний набір протоколів з відкритим процесом визначення стандартів та відсутністю власника.
У стеку ТСР/IP визначено наступні 4 рівні: 1 – Прикладний (реалізуються мережеві служби: WWW, SNMP, FTP, TFTP, telnet, SMTP та ін.), 2 – Транспортний (функціонують протокол керування передаванням TCP та протокол дейтаграм користувача UDP), 3 – Мережевий (належать протоколи збору маршрутної інформації RIP i OSPF, протокол міжмережевих керуючих повідомлень ICMP, протокол вирішення адрес ARP та протокол передавання пакетів в об’єднаній мережі IP ), 4 – Канальний (організовується підтримка стандартів фізичного та канального рівнів: Ethernet, Token Ring, FDDI, X.25, PPP та ін.).
В моделі TCP/IP протокол IP належить до мережевого рівня, функцією якого є забезпечення передачі інформації в системі, що об’єднує довільну кількість мереж, причому ці мережі можуть використовувати різноманітні принципи передачі повідомлень між кінцевими вузлами і володіти довільною структурою зв’язків. Загалом, протокол IP не орієнтований на з'єднання, не гарантує доставку повідомлення і тому вважається ненадійним протоколом. Він призначений для маршрутизації та відправки пакетів між мережами та вузлами.
Кожен комунікаційний протокол стеку TCP/IP оперує певною одиницею передавання даних (рис. 1).
В термінології INTERNET комп'ютер, на якому працює мережевий протокол, наприклад, протокол IP з набору TCP/IP, називається хостом (host). Хости обмінюються даними між собою і значна доля діяльності в INTERNET обумовлена управлінням інформаційними потоками між комп'ютерами-хостами. Терміном вузол (node), як правило, коротко називають такі пристрої як міст, маршрутизатор, комутатор, шлюз чи хост.
На сьогодні існує дві версії протоколу IP: IPv4 та IPv6. Зараз вживається протокол IPv4, що описаний в RFC 791.
Рис 1. Структура стеку протоколів TCP/IP
IP-адреса може бути записана у двох форматах – двійковому (binary) та десятковому з точковими розділювачами (dotted decimal notation). Остання форма використовується як зручніша для сприйняття в порівнянні з бінарною формою. Кожна IP-адреса має довжину 32 біти і для зручності її поділяють на чотири октети, що відділяються один від одного точками. Кожен октет представляє десяткове число в діапазоні від 0 до 255. Ці 32 розряди IP-адреси містять ідентифікатор мережі (network ID) та ідентифікатор хоста (host ID).
Ідентифікатор мережі визначає фізичну мережу, він є однаковим для усіх вузлів в одній мережі і унікальний для кожної з мереж, включених в об'єднану мережу. Ідентифікатор вузла являє собою адресу конкретного вузла в цій мережі.
В протоколі IPv4 існує п'ять класів IP-адрес у відповідності з різними розмірами комп'ютерних мереж. Клас адреси визначає, які біти відносяться до ідентифікатора мережі, а які – до ідентифікатора вузла. Також клас визначає максимально можливу кількість вузлів у мережі.
Класи IP-адрес ідентифікують по значенню першого октету адреси наступним чином.
Адреси класу А назначаються хостам дуже великих мереж. Старший біт в цих адресах завжди рівний нулю. Перший октет присвоюється організацією InterNIC і модифікації не підлягає. Решта три октети містять ідентифікатор вузла.
Адреси класу В назначаються хостам великих та середніх по розміру мереж. Два старші біти в цих адресах завжди рівні двійковому значенню 10. Два перші октети присвоюються організацією InterNIC і модифікації не підлягають. Решта два октети містять ідентифікатор вузла.
Адреси класу С застосовуються в невеликих мережах. Три старші біти в цих адресах завжди рівні двійковому значенню 110. Три перші октети присвоюються організацією InterNIC і модифікації не підлягають. А останній четвертий октет є ідентифікатором вузла.
Класи D та E мають специфічне призначення. Адреси класу D призначені для групових повідомлень. Чотири старші біти в цих адресах завжди рівні двійковому значенню 1110. Решта біт означають конкретну групу отримувачів і не діляться на частини. Пакети з такими адресами розсилаються вибраній групі хостів в мережі.
Клас E – є експериментальний і зарезервований для майбутнього використання, наразі не використовується. Чотири старші біти в цих адресах завжди рівні двійковому значенню 1111.
Слід зазначити, що існує цілий ряд адрес, які трактуються особливим чином, ніколи не присвоюються хостам і вважаються виділеними адресами. Ними є:
- 0.0.0.0 даний вузол
- номер мережі | всі нулі дана IP-мережа
- всі нулі | номер хоста хост в даній (локальній) IP-мережі
- 255.255.255.255 всі хости в даній (локальній) IP-мережі
- номер мережі | всі одиниці всі хости у вказаній IP-мережі
- 127.x.y.z шлейфова адреса (напр., 127.0.0.1)
При визначенні максимальної кількості хостів m в мережі використовується наступна формула
, (1)
де n – кількість бінарних розрядів, відведених під ідентифікатор хоста, а віднімання числа 2 від загальної кількості пояснюється наявністю в кожній мережі адреси самої мережі та адреси усіх хостів у цій мережі.
Маска підмережі являє собою 32-розрядне бінарне число, яке використовується для виділення (маскування) з IP-адреси її частин: ідентифікаторів мережі та хоста. Така процедура необхідна для того, щоб вияснити, чи відноситься та чи інша IP-адреса до локальної чи віддаленої мережі.
Кожен хост TCP/IP повинен мати маску підмережі – чи таку, що задається по замовчуванню (в тому випадку, коли мережа не ділиться на підмережі), чи спеціальну (якщо мережа розбита на декілька підмереж). Значення маски підмережі по замовчуванню залежить від використовуваного в даній мережі класу IP-адрес.
Установка та настройка стеку TCP/IP на хості може здійснюватись в двох режимах – ручному (звичайний режим, який, проте, вимагає знання усіх параметрів TCP/IP для даного хоста, - їх можна взнати в системного адміністратора мережі) та автоматичному (з використанням протоколу динамічної конфігурації хостів DHCP (Dynamic Host Configuration Protocol)). Для установки та настройки стеку TCP/IP на хості в ручному режимі необхідно задати наступні параметри:
IP-адресу хоста (яка повинна бути унікальною);
маску підмережі;
IP-адресу шлюзу по замовчуванню.
Завдання
19. Створити об’єднану мережу з наступних трьох заданих мереж:
- 172.17.0.0;
- 192.168.12.0;
- 10.0.0.0.
Розробити свій варіант IP-структуризації об’єднаної мережі. Для цього:
1) заповнити таблиці маршрутизації усіх маршрутизаторів об’єднаної мережі (Для кожної заданої мережі використати один маршрутизатор!);
2) назначити IP-адреси інтерфейсам маршрутизаторів та значення масок їх підмереж;
3) назначити IP-адреси хостам, значення масок підмереж та IP-адресу шлюзу по замовчуванню;
Провести моделювання розробленої локальної мережі у середовищі Packet Tracer.
(Для перевірки працездатності мережі застосувати діагностичні утиліти. У кожній підмережі має бути задіяно не менше 3-х хостів).
Виконання індивідуального завдання
Таблиці маршрутизації
Перевірка працездатності мережі
Тестування протоколу TCP/IP
Висновок
При виконанні лабораторної роботи я ознайомився із стеком протоколів TCP/IP та питанням IP-адресації на основі протоколів IPv4 та IPv6. Створив об’єднану мережу, розробив її IP-структуризацію та провів моделювання розробленої локальної мережі у середовищі Packet Tracer.