Комп'ютерні мережі
В кінці 50-их – на поч. 60-их років, коли з’явились потужні машини, виникла потреба сполучати їх з одним або багатьма терміналами для ефективного використання ресурсів таких машин. Така система телеопрацювання інформації мала структуру (рис. 1)
ЦП
Термінал
Термінал
Термінал
Термінал
рис. 1
Канали зв’язку в такій системі були досить дорогими і використовувалися терміналами неефективно. Тому було розроблено спеціальні пристрої – мультиплексори (комутатори), які збирали трафік з розташованих поблизу терміналів для спрямування цього трафіка на ЦП. В такій системі з’явився так званий фронтальний процесор, який виконував функції організації зв’язку (рис. 2)
З розвитком технології ПК з’явилася необхідність об’єднувати їх у рамках більшої обчислювальної структури. Замість терміналів стали використовувати ПК. З’явилося поняття локальної обчислювальної мережі, тобто мережі, яка об’єднує ПК в рамках кімнати, поверху, будинку. Такі структури об’єднувалися в ще більші, які утворювали територіальні комп’ютерні мережі, а згодом – глобальні. Потім мережі набули такого вигляду (рис. 3)
Тепер комп’ютер включає в себе: ПК, термінали, зовнішні пристрої мережі та мережу зв’язку. Кожен вузол мережі – це спеціалізований комп’ютер для виконання комунікаційних функцій – маршрутизатор. Для передавання даних між вузлами використовують канали існуючої телефонної мережі. Замість терміналів тепер використовують ПК. І тепер ПК – це в більшій степені мережевий термінал, аніж комп’ютер для виконання якихось операцій.
Дослідження показали, що >80% інформації концентрується в локальній зоні: в межах відділу, організації і т.д., тому значного поширення і розвитку набули локальні мережі, які об’єднуються в територіальні і глобальні мережі.
З усіх засобів телеопрацювання інформації сьогодні можна виділити 2 типи мереж:
Локальні мережі (ЛМ) – LAN (Local Area Network);
Глобальні мережі (ГМ) – WAN (Wide Area Network).
Ці мережі суттєво відрізняються за технічними розв’язками.
LAN. Одна з визначних ознак ЛМ – це наявність високошвидкісного каналу передавання даних. Швидкість передавання даних в такому каналі на порядок вища, ніж швидкість периферійних пристроїв комп’ютера і наближається до швидкості передавання на внутрішній шині комп’ютера. На базі технології ЛМ є можливим створення єдиної цілісної інформаційної системи, в якій витрати часу на зв’язок суттєво не впливають на час виконання функцій. Така система називається розподіленою (РІС). Тут організовано паралельний порядок опрацювання інформації.
Виділяють 3 ступені використання РІС:
Розподіл ресурсів – задачі сумісно використовують ресурси системи (найпошир.).
Розподіл навантаження – задачі, які надходять в систему, передаються на вільні комп’ютери.
Розподіл опрацювання даних – маємо сукупність елементів опрацювання, пов’язаних логічно, з фізично децентралізованим керуванням ресурсами з метою сумісного виконання прикладних програм.
Можливості розподіленого навантаження та опрацювання даних реалізовано в мережевих ОС: Novell Netware, Unix, Windows NT.
В ЛМ найдорожчими є пристрої опрацювання інформації, а не пристрої комунікації.
Ефективність ЛМ можна підвищити за рахунок прикладної частини (апаратура + програма + обслуговуючий персонал).
WAN. ГМ – необмежені в просторі. Для передавання даних найчастіше використовують наявні телефонні канали з низькою швидкістю передавання даних (1÷3 кбіт/с) та з високим впливом завад. Все це не дозволяє використовувати такі мережі в реальному режимі часу.
Найдорожчим в ГМ є комунікаційне обладнання. Для його ефективного використання застосовують спеціальні процесори зв’язку.
Перспективою з точки зору зближення двох типів мереж є технологія ATM (Asynchronous Transfer Mode).
Крім ЛМ і ГМ виділяють регіональні мережі (MAN – Metropolitan Area Network) – мережі масштабу міста, району, області. В залежності від масштабів такої мережі в ній можуть використовуватись як технології ЛМ, так і ГМ.
В результаті розвитку мережевих технологій та об’єднання окремих ЛМ окремих фірм в одне ціле виникло поняття корпоративної мережі, що є об’єднанням деякої кількості локальних мереж за допомогою телефонних, супутникових та інших каналів у єдину мережу фірми.
Середовище зв’язку відкритої системи (OSI Environment) – це сукупність функцій, які дають змогу реальним відкритим системам виконувати обмін даними відповідно до міжнародних стандартів. Середовище має складний набір функцій, тому, створюючи його, треба дотримуватись ієрархічного підходу, що полягає в таких принципах:
функція передавання даних дуже складна, тому її треба поділити на рівні;
кожен рівень виконує конкретний обмежений набір завдань;
межі між рівнямипроводять так, щоби обмін між ними був мінімальним;
рівні описують так, щоби зміни в одному рівні не викликали змін в інших.
Модель взаємодії відкритих систем
7498ISO визначає модель взаємодії відкритих систем (7-ми рівнева модель):
Цій моделі відповідають всі відкриті системи, в тому числі інформаційні.
Рівні 1 – 4 відповідають за надійне передавання даних, а з 5 по 7 – за обслуговування прикладних процесів. 1 і 2 рівні пов’язані з фізичною топологією мережі, 3 і 4 – з протоколами комутаційного рівня, а 5, 6 і 7 – з протоколами прикладного рівня.
У мережі має місце фізичне та логічне переміщення даних.
Фізичне переміщення даних починається на верхньому рівні і йде вниз по всіх рівнях моделі. Наприклад: на верхньому рівні було створено інформацію. Протокол прикладного рівня передає ці дані в певній формі протоколу комунікаційного рівня. На цьому рівні проходить “упаковка” інформації в інформаційний пакет визначеної структури. Цей пакет передається протоколу рівня передачі даних для фізичної пересилки. Потім ці дані переміщуються по мережевому носії у вигляді імпульсів, що відповідають 0 або 1. Цей носій може бути різного виду кабелем, радіоканалом, … Як тільки дані дойшли до комп’ютера-отримувача, вони починають переміщатись знизу догори. На кожному рівні вони обробляються, але виділяється тільки та частинка, яка була запакована на тому ж рівні, що й у комп’ютері-передавачі. В кінці інформація доходить до користувача на прикладному рівні.
У прикладі, наведеному щойно, логічно інформація передавалась з комп’ютера в комп’ютер тільки між одинаковими рівнями.
Призначення протоколів усіх рівнів
1 рівень: спряження з фізичними засобами.
2 рівень: передавання між сумісними системами.
3 рівень: прокладка сполучення між системами.
4 рівень: налагодження наскрізних сполучень.
5 рівень: організація та проведення діалога.
6 рівень: перетворення даних.
7 рівень: реалізація різних форм взаємодії прикладних процесів.
Техніко-експлуатаційні характеристики середовищ передавання такі:
час і швидкість розповсюдження сигналів;
вартість;
швидкість згасання сигналу на одиницю довжини кабеля з урахуванням частоти сигналу;
електричний опір 1м кабеля;
завадостійкість у різних навколишніх середовищах;
випромінювання в довкілля.
Важливим параметром якості кабеля є перехідне згасання на ближньому кінці. Електричний струм в дроті створює електромагнітне поле, яке може спричинити завади в інших дротах. Чим більша частота сигналу, тим більші завади. В якісних кабелях рівень корисного сигналу значно вищий, ніж рівень завад, які генеруються. Для характеристики цього явища існує параметр, який називається випромінювання в довкілля (EMI – Electromagnetical Interference). Цей параметр характеризує ступінь та параметри паразитного випромінювання, яке генерується під час передавання сигналів кабелем: значне випромінювання може призвести до спотворення даних, нестабільної роботи приладів, до аварії. Вони негативно впливають на здоров’я людей. Передусім це стосується неекранованих кабелів. В цих кабелях використовується декілька жил дроту таким чином, щоби сигнали в кожній парі дротів мали протилежну полярність і компенсували випромінювання один в одному. Ступінь компенсації в такому випадку називається збалансованістю.
Комісія ЄС розробила єдиний європейський стандарт для електричного обладнання, якому повинні відповідати національні стандарти за показником EMI. Цей стандарт розповсюджується на всі мережі, встановлені після 1 січня 1996 р. Мережеве обладнання в промислових умовах допускає випромінювання, що загасає на 40 дб на відстані10 м від кабеля, а для комерційних і непромислових мереж, цей показник – 30 дб. Продукція, що пройшла тестування на цей стандарт позначається як символи „СЕ” в кружечку.
Найбільшого поширення при створенні локальних і корпоративних мереж отримали так звані кабелі типу скручена пара. В основі лежать два провідники, які скручені певним чином. Такі кабелі поділяються на декілька груп:
(цього напевне не треба) Можливі середовища передавання в комп’ютерних мережах.
Ефірні середовища.
Радіоканал.
Формується на певній частоті. Інформація передається за допомогою модуляції сигналу. Швидкість передавання невелика: 20-150 кбіт/с. Вартість – середня. На такий канал впливають всі види радіозавад. Працює тільки в межах радіо досяжності. Використовується в пересувних станціях.
Інфрачервоний.
Такий канал працює тільки в межах прямої оптичної видимості. Він є нечутливим до електромагнітних завад. Максимальна відстань між станціями – до 3-ох км. Швидкість передавання – 2-4 Мбіт/с. Канал досить дешевий.
Недоліки: апаратура, як правило, недовговічна; має місце загасання сигналу при поганій прозорості.
Вартість
Обсяг інформації
Зона комутації пакетів
Зона комутації каналів
Зона призначеного каналу
комутація пакетів
комутація каналів
призначений канал
УКХВ канал.
Передавання відбувається за допомогою частотно-модульованих сигналів у досить широкому діапазоні частот, а це дозволяє створювати досить велику кількість каналів. Відстань – 1,5 км; швидкість – 20-40 Мбіт/с.
Переваги: мала потужність апаратури; можливість роботи в умовах поганої і непрямої видимості. В цілому ефективність така як і у радіоканалу.
Мікрохвильовий канал.
Інформацію передають спеціальним лазером, а приймають – фотозчитувачем. Відстань – 20 км; швидкість 20 Мбіт/с.
В цілому ефірними середовищами передають 5% загального обсягу інформації, що передається в комп’ютерних мережах, але значення цього типу середовища зростає.
Передаючі середовища.
Коаксіальний кабель.
Є одним із найпоширеніших видів передаючого середовища. Він завадостійкий, довговічний, досить дешевий, його дуже просто з’єднати з апаратурою мереж.
Коаксіальні кабелі бувають широкосмугові. Швидкість передавання таких кабелів – 300-500 Мбіт/с; загасання сигналу на частоті 100 МГц – 10 дБ/100 м; термін придатності – 10-12 р; затримка поширення сигналу – 2-5 нс/м.
У вузькосмугових коаксіальних кабелях швидкість передавання – до 50 Мбіт/с; загасання сигналу на частоті 10 МГц – 4 дБ/100 м. Решта параметрів такі, як і в широкосмугових. Довжина кабеля в комп’ютерних мережах переважно визначається загасанням сигналу. У випадках сильного загасання ставлять повторювані (підсилювачі), які підсилюють сигнал, не змінюючи його форми.
Прозоре скловолокно.
Найпоширеніший кабель такого виду має кварцову середину діаметром 20-60 мкм. Навколо цієї серцевини робиться окисна плівка з меншим коефіцієнтом відбиття. Оскільки маємо справу із світлом, то швидкість передачі висока – 0,8-1 Гбіт/с. Теоретично можлива швидкість передачі – 100 км. Різновиди кабелів: одномодові і багатомодові.
Одномодові. Середовище має 10 мкм, світло генерується напівпровідниковим лазером. Передавання інформації відбувається при довжині хвиль 1,3-1,55 мкм. Смуга перепускання – 2ГГц. Ширина смуги не залежить від довжини лінії. Загасання сигналу – 0,7дБ/км. Тут в кожен момент часу може поширюватись сигнал тільки одного променя (моди). Можлива відстань – 100 км. Має місце висока вартість обладнання: лазерів і фотоприймачів.
Багатомодові. Серцевина може мати різний діаметр: 50 мкм, 62,5 мкм, 100 мкм, 140 мкм. Для генерації світла використовуються суперлюмінісцентні діоди. Передавання відбувається на хвилях з довжиною 1,3 та 0,85 мкм. Смуга перепускання – 800-900 МГц. Її ширина залежить від довжини лінії. Загасання сигналу – 0,5-7 дБ/км. Максимальна відстань – 10 км. Одночасно можуть предаватися кілька променів (мод), що входять у кабель під різними кутами. Для підвищення механічної міцності останнім часом замість скла використовують прозорі пластмаси. Такі кабелі дешевші, але з часом пластмаса старіє, а це сприяє посиленню загасання.
Скручена пара дротів.
Зараз це найпоширеніший вид передавального середовища. Він є найдешевшим. Максимальна відстань – 1,5-2 км. Максимальна швидкість – 1,2 Гбіт/с. Має набагато гірший у порівнянні з коаксіальним кабелем захист від завад. Тривалість затримки поширення сигналу 8-12 нс/м. Загасання на частоті 10 МГц – 10-28 дБ/10 м. Термін експлуатації – 6 р. Дуже простий в укладанні. На даний момент це головне середовище в локальних мережах.
UTP – Unshielded Twisted Pain – Неекранована скручена пара (EMI).
FTP – Folged Twisted Pain – Фольгована скручена пара.
STP – Shielded Twisted Pain – Екранована скручена пара.
Плоский кабель (шлейф).
Складається з 12-ти і менше дротів, об’єднаних загальною екранною сіткою. Вони є ізольованими один від одного. Передавання на відстань 15 м. Швидкість передавання приблизно така сама, як і в скрученої пари.
Сукупність засобів фізичного та канального рівнів утворюють певну систему, яка називається ланкою або каналом передавання даних. Ланка складається з:
фізичного каналу (фізичне середовище передавання);
засобів перетворення цифрових даних, які виробляє комп’ютер, у форму, прийнятну для передавання фізичним каналом, тобто у сигнал;
засобів керування ланкою або каналом передавання даних. Тобто маємо сукупність програмно-технічних засобів та фізичного середовища передавання, призначеного для передавання сигналу даних.
З погляду користувача найважливішою характеристикою каналу зв’язку є кількісні і якісні параметри сервісів, які надає продавець каналу. В теперішній час визначено багато загальноприйнятих типів каналів:
найпоширеніший – Switched – 56 Кбіт/с, а також
європейські: американські:
E1 – 2,048 Мбіт/с T1 – 1, 544 Мбіт/с
E2 – 34,368 Мбіт/с T3 – 45 Мбіт/с
За напрямками розрізняють такі типи передавання даних:
симплексне (передавання в одному напрямку);
напівдуплексне (передавання в прямому і зворотному напрямках);
дуплексне (передавання одночасно в прямому і зворотному напрямках).
(цього можливо не треба) Структура ланки передавання даних
Пристрій спряження (див. рис.) виконує головні функції:
кодування – декодування;
модуляцію – демодуляцію.
Кодування – це перетворення цифрового сигналу, який надходить від комп’ютера, з метою підвищення його завадостійкості та зручності передавання.
завади
Засоби керування ланкою
MAU
фізичний канал
Засоби керування ланкою
MAU
пристрій спряження
Модуляція – це процес переходу від кодового сигналу до сигналу даних. Звичайно це використовує сигнал-носій, деякі параметри якого змінюються відповідно до кодового сигналу. В сучасних системах зв’язку найпоширенішими є такі види модуляції:
+12В
-12В
0 0
0 0
1 1 1
1
Модуляція гармонічних коливань в коливання струму або напруги. В залежності від змінного параметру розрізняють такі види модуляції:
амплітудну (в „0” зменшується амплітуда коливань);
частотну (в „1” збільшується частота);
фазову (при переході „0-1” і „1-1” також змінюється фаза).
тактовий сигнал
синхр.
дані
0
1
1
0
1
Носій послідовних імпульсів. В залежності від параметрів послідовності і змін кодового сигналу розрізняють такі види модуляції:
амплітудно-імпульсну;
широтно-імпульсну (змінюється ширина імпулься);
фазово-імпульсну;
частотно-імпульсну.
В магістральних телефонних каналах, які використовуються в глобальних мережах використовують імпульсно-кодову модуляцію. Якщо сигнал є аналоговим, то над ним потрібно виконати такі перетворення:
дискретизацію (якщо навіть сигнал складний, але є багато відліків, то його можна відтворити без втрат);
квантування;
кодування.
Для передавання даних в аналоговій формі в глобальних мережах використовуються модеми. В локальних мережах використовуються пристрої адаптори.
приймач / передавач
пристрій спряження
апаратура цифрового інтерфейса
MAU
шина CPU
сигнал на передавання
сигнал на приймання
дані в цифровій формі
На фізичний канал передавання даних впливають завади, які спотворюють канал, а це призводить до виникнення помилок. З впливом завад борються на протоколах фізичного і канального рівнів засобами керування каналом передавання даних. Якщо на вході фізичного каналу маємо Z(t), то на виході внаслідок впливу завад отримаємо спотворений сигнал Z'(t). Якщо Z(t) і Z'(t) пов’язані деякою функціональною залежністю, яка дає можливість повністю поновити сигнал, то така завада називається регулярністю. За впливом на регулярний сигнал завади поділяються на:
адитивні – додаються до початкового сигналу;
мультиплікативні – множаться на початковий сигнал.
Якщо характеризувати сигнали із статистичного погляду, то їх можна розділити на:
флуктуаційні – їх описує неперервна випадкова функція часу (такі завади формуються в наслідок накладання різних завад з різних джерел, причому серед складових немає окремих імпульсів, які би перевищували загальний рівень сигналу більш ніж у 3-4 рази);
імпульсні – це послідовність імпульсів з випадковою амплітудою, шириною та часом появи, причому найбільшу небезпеку створюють імпульси, амплітуда яких близька до амплітуди корисного сигналу.
Цифрові дані в комп’ютерних мережах передаються послідовними бітами, а в самому комп’ютері – паралельно. Біти передаються у формі сигналів. Сигнали бувають аналоговими та цифровими.
Аналоговий – це модульований сигнал синусоїдальної форми, а цифровий – це дворівневий дискретний сигнал.
Вузькосмугові передавання (baseband) є цифровим. Передавання та приймання проходить одночасно. Використовується вся смуга перепускання кабеля. Для підсилення сигналу використовують повторювачі (repeaters).
Широкосмугове передавання є аналоговим. Смуга перепускання каналу поділяється на окремі діапазони частот, які використовуються різними каналами. Для оновлення і підсилення сигналу використовують підсилювачі.
прямий канал
зворотний канал
Передавання цифрових даних відбувається з використанням методу „метод передавання за формою сигналу без повернення „0””. При такій передачі визначити де починається логічна „1” важко. Для розпізнавання моменту закінчення та початку сигналу використовують синхронізацію. Можливими є 2 випадки:
H
L
NRZ
L
H
манчестерське кодування
1
1
1
0
Виділяється спеціальна лінія, якою передається сигнал тактової частоти в коаксіальному кабелі або в скрученій парі.. Таке передавання називається синхронним передаванням. Воно може бути без окремої лінії – тоді синхросигнал передається разом із даними, а також у проміжках між передаванням даних.
Асинхронне передавання. У проміжках між передаванням даних синхросигнал не передається. Тому такий спосіб передавання сигналу відбувається з автоналагоджуванням. В цьому випадку потік бітів ділиться на байт. В приймач та передавач вбудовують тактові генератори. Перед кожним байтом передається спеціальний біт, який називається стоп-біт. Він передається також, коли канал вільний. Під час переходу з високого рівня на нижній генератор пропускає 1 біт і починає приймати. Прикладом такої передачі є так зване „манчестерське кодування”. Тактовий генератор приймача синхронізується під час передавання кожного біта у випадку переходу з високого рівня на низький у середині інтервала біта. Якщо інформація не передається, то генератори приймача і передавача розладнані. Тому перед передаванням передається спеціальна послідовність бітів – преамбула – для синхронізації передавача і приймача.