Швидкі алгоритми обчислення дискретних тригонометричних перетворень

Інформація про навчальний заклад

ВУЗ:
Національний університет Львівська політехніка
Інститут:
Не вказано
Факультет:
Не вказано
Кафедра:
Кафедра ЕОМ

Інформація про роботу

Рік:
2004
Тип роботи:
Лабораторна робота
Предмет:
Обробка сигналів
Група:
КСМ-52

Частина тексту файла (без зображень, графіків і формул):

Міністерство освіти та науки України Національний університет „Львівська політехніка” кафедра ЕОМ Лабораторна робота №3 з курсу: „Алгоритми і засоби цифрової обробки сигналів” Тема: Швидкі алгоритми обчислення дискретних тригонометричних перетворень Львів – 2004 р. Мета роботи: Дослідити швидкі алгоритми дискретних тригонометричних перетворень і порівняти їх з алгоритмами безпосереднього обчислення тpигонометpних перетворень. № Завдання  9 Розробити процедуру дискретного тригонометричного перетворення вхідної послідовності x(n), розмірності N використовуючи алгоритм Algorithm. Формулу розкладу отримати за методом Кулі-Тьюкі. Algorithm : ШПХ2 (швидке переотворення Хартлі заосновою 2) з прорідженням за часом. N = 512 x(n) = ; n = 0, 1, ..., N-1.   Теоретичні відомості Алгоритми швидкого перетворення Фур’є (ШПФ) можуть бути отримані за допомогою послідовного застосування операції розкладу одномірного масиву вхідних відліків сигналу на двохмірний. Ця операція здійснена тільки у випадку, коли N (довжина послідовності) є складним числом (N = N1 ( N2 ( ... ( Nj). Якщо N просте, його неможливо розкласти на прості співмножники; для такої послідовності алгоритмів ШПФ не існує. В більшості практичних випадків вхідну послідовність штучно продовжують додаванням нульових відліків до отримання N як складного числа. Для характеристики розкладу використовують поняття “основа”, якщо всі співмножники однакові (N1 = N2 = ... = Nj) і “рощеплена основа”, якщо співмножники неоднакові. Приклад. N = 64 = 2 ( 2 ( 2 ( 2 ( 2 ( 2 - основа 2. N = 64 = 4 ( 4 ( 4 - основа 4. N = 128 = 2 ( 4 ( 4 ( 4 - рощеплена основа 2-4. Дискретне перетворення Хартлі Дискретне перетворення Хартлі (ДПХ) кінцевої N-точкової послідовності x(n), n=0,1,...,N-1, N=2m m=1,2,3,..., т.е. - H(k) = ДПХN{x(n)}, визначається як  k = 0,1,...,N-1, де , . Алгоритм БПХ2 з прорідженням в часі. Позначимо через H1(k) і H2(k) ДПХ парних і непарних членів послідовності x(n): H1(k) = ДПХN/2{x(2n)} і H2(k) = ДПХN/2{x(2n+1)}. Застосовуючи методику аналогічну як і при побудові алгоритмів ШПФ і виконавши відповідні перетворення отримаємо процедуру для розкладу алгоритмів БПХ. H(k) = H1(k) + a; H(k+N/2) = H1(k) - a; H(N/2-k) = H1(N/2-k) + b; H(N-k) = H1(N/2-k) - b; ; . де k = 0,1,...,N/4-1; Розклад необхідно проводити до тих пір поки H1(k) і H2(k) не будуть двухточковими ДПХ. Алгоритм ШПХ2 з прорідженням по частоті. Загальна формула розкладу алгоритму з прорідженням по частоті задається виразами: H(2k) = H1(k); H(2k+1) = H2(k), k=0,...,N/2-1 де H1(k), H2(k) - N/2-точкові ДПХ послідовностів x1(n), x2(n); x1(n) = x(n) +x(n+N/2), , n = 0,1,...,N/2-1. На основі цього запишемо процедуру переходу до перетворень меншої розмірності в N-точковому алгоритмі ШПХ2: a = x(n) - x(n+N/2); b = x(N/2-n) - x(N-n); x1(n) = x(n) + x(n+N/2); x1(N/2-n)= x(N/2-n) + x(N-n);  , n = 1, 2, ...,N/4-1. Продовжуючи на основі цієї процедури розбиття отриманих послідовностей менших розмірностів до двохточкових, синтезуємо алгоритм ШПХ2 з прорідженням по частоті. Комбінуючи формули розкладу алгоритмів БПХ за основою два і чотири з прорідженням в часі, отримаємо формули розкладу алгоритму за “рощепленою основою” 2-4 (БПХ24) , де H0(k) = ДПХN/2{x(2n)}, Hl(k) = ДПХN/4{xl(n)}, xl(n) = x(4n+l), l=1,3. При переході до перетворень меншої розмірності використаємо процедуру: a13 = H1(0) + H3(0); a31 = H1(0) - H3(0); d1 = .H1(N/8); d3 = .H3(N/8); H(0) = H0(0) + a13; H(N/4) = H0(N/4) + a31; H(N/2) = H0(0) - a13; H(3N/4) = H0(N/4) - a31; H(N/8) = H0(N/8) + d1; H(3N/8) = H0(3N/8) + d3; H(5N/8) = H0(N/8) - d1; H(7N/8) = H0(3N/8) - d3; ; ; l=1,3; a13 = a1 + a3; a31 = a1 - a3; b13 = b1 + b3; b31 = b3- b1; H(k) = H0(k) + a13; H(N/4-k) = H0(N/4-k) + a31; H(k+N/4) = H0(k+N/4) + b31; H(N/2-k) = H0(N/2-k) + b13; H(k+N/2) = H0(k) - a13; H(3N/4-k) = H0(N/4-k) - a31; H(k+3N/4) = H0(k+N/4) - b31; H(N-k) = H0(N/2-k) - b13, k=1,2...,N/8-1. Продовжуючи процес розбиття до двох і чотирьохточкових перетворень, синтезуємо необхідний алгоритм ШПХ24. Порядок виконання Для поставленої задачі застосовуємо методики розкладу дискретного тригонометричного перетворення вхідної послідовності х(n), для даного варіанту N рівне 256 елементів. Згідно завдання отримаємо послідовність результатів дискретного тригонометричного перетворення вхідної послідовності від заданих значень х(n), де n = 0,1, …, N – 1. Дані про час виконання приведено далі:  Висновок: На цій лабораторній роботі дослідив швидкі алгоритми дискретних тригонометричних перетворень і порівняв їх з алгоритмами безпосереднього обчислення тpигонометpних перетворень.
Антиботан аватар за замовчуванням

28.01.2013 14:01-

Коментарі

Ви не можете залишити коментар. Для цього, будь ласка, увійдіть або зареєструйтесь.

Ділись своїми роботами та отримуй миттєві бонуси!

Маєш корисні навчальні матеріали, які припадають пилом на твоєму комп'ютері? Розрахункові, лабораторні, практичні чи контрольні роботи — завантажуй їх прямо зараз і одразу отримуй бали на свій рахунок! Заархівуй всі файли в один .zip (до 100 МБ) або завантажуй кожен файл окремо. Внесок у спільноту – це легкий спосіб допомогти іншим та отримати додаткові можливості на сайті. Твої старі роботи можуть приносити тобі нові нагороди!
Нічого не вибрано
0%

Оголошення від адміністратора

Антиботан аватар за замовчуванням

Подякувати Студентському архіву довільною сумою

Admin

26.02.2023 12:38

Дякуємо, що користуєтесь нашим архівом!