Міністерство освіти і науки України
Національний університет „Львівська політехніка”
Розрахункова робота з фізики
Варіант №2
1.Тіло рухається в площині так, що його координати змінюються згідно з рівнянням x = A1+B1t, y = A2+B2-C2t2, де A1 = 2м, B2 = 5 м/с, B1 = 10 м/с, A2 = 3м, C2 = -4 м/с2. Знайти швидкість і прискорення в моменти часу t = 2 c.
Дано Як нам відомо існує така закономірність у рівнянні руху тіла:
A1 = 2м a = V′ = S′′, отже з цього ми знаходимо швидкість і прискорення.
B2 = 5 м/с V1= x′ = B1 = 10
B1 = 10 м/с V2 = y′ = -2C2t + B2 = 8t+5=16+5
A2 = 3м V =
V1 + V2
- загальна швидкість з двох рівняннь
C2 = -4 м/с2 V =
10+5+16
= 5,6 м/с
t=2c a1 = V1′ = 0
a2 = V2′ = -2C2t = 8t, тоді
a-? V-? a= 8*2 = 16 м/с2
Відповідь: V = 5,6 м/с, a = 16 м/с2.
2.Сила тяги автомобіля змінюється з пройдений шляхом за законом F = B + DS, де B = 8H, D = 0.5 H/м. Визначити роботу сили на ділянці шляху від положення S1 = 2м до положення S2 = 10м.
Дано A = F·S – загальна формула механічної роботи
B = 8H Знаходимо роботу роботу на кожному положенні:
D = 0,5 H/м A1 = (B+DS1)·S1
S1 = 2м A2 = (B+DS2)·S2
S2 = 10м A = A2-A1 – робота на заданому проміжку
A1 = (8 + 0,5·2)·2 = 18
A2 = (8 + 0,5·10)·10 = 130
А-? A = 130-18 = 112 Дж
Відповідь: А = 112 Дж
3.На лаві Жуковського стоїть людина і тримає в руках стрижень вертикально по осі лави. Лава з людиною обертається з кутовою швидкістю ω1 = 4 рад/с. Сумарний момент інерцій людини і лави J = 5 кг.м2. Довжина стрижня l=1,8м, маса m = 6 кг. Вважати, що центр мас стрижня з людиною знаходиться на осі платформи. З якою швидкістю ω2 буде обертатися лава з людиною, якщо повернути стрижень так, щоб він зайняв горизонтальне положення?
Дано Згідно закону збереження імпульсу: J1ω1 = J2ω2, тоді
ω1 = 4 рад/с J1 = J + J1'; J2 = J + J2', де J – момент імпульсу людини і лави, J' -
J = 5 кг.м2 момент інерції стержня відносно осі.
m = 6 кг Момент інерції тонкого стрижня масою m і довжиною L відносно
l=1,8м його центру рівен: Jс =
1
12
m·L2, отже J1' = 0; J2' =
ml
2
12
, і тоді
Jω1 =
J +
ml
2
12
∙ω2, звідки частота яку шукаємо:
ω2 =
Jω1
J +
1
12
ml
2
ω2 =
5∙4
5 +
1
12
6
1,8
2
= 3,02 рад/с
ω2 - ?
Відповідь: ω2 = 3,02 рад
4.Яка частина молекул сірчистого ангідриту SO2 при температурі Т+473,15 К має швидкість в межах від v1 = 210 м/с до v2 = 220 м/c?
Дано Vв – найбільш вірогідна швидкість молекул
M(SO2) = 64 г/моль = Vв =
2