Дискретизація і квантування сигналів

Інформація про навчальний заклад

ВУЗ:
Національний університет Львівська політехніка
Інститут:
Не вказано
Факультет:
Не вказано
Кафедра:
Кафедра ЕОМ

Інформація про роботу

Рік:
2024
Тип роботи:
Звіт до лабораторної роботи
Предмет:
Обробка сигналів

Частина тексту файла (без зображень, графіків і формул):

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА» Кафедра ЕОМ ЗВІТ з лабораторної роботи №2 з дисципліни: «Цифрова обробка сигналів» на тему: «Дискретизація і квантування сигналів» Мета роботи: дослідити процес дискретизації і квантування сигналів, оцінити похибку оцифровування. Завдання:  при чому, згідно варіанту: № А1 А2 А3 А4          19 0,13 27 -2 19 1 2 1/7 9  0    Тобто, аналітичний запис сигналу такий: . Аналітичний розрахунок кроку дискретизації та періоду сигналу Згідно теореми Котельникова:  , де : - гранична частота. Оскільки, заданий сигнал містить різні частоти, то граничною буде найбільша з них: . Отже:  Підставивши отримане значення у теорему Котельникова, маємо крок дискретизації:  Для знаходження періоду заданого сигналу слід знайти найменше спільне кратне між періодами всіх окремих складових сигналу. Таких частин є чотири (чотири доданки присутні в аналітичному представленні сигналу): ; ; ;  Як відомо, амплітуда та фаза не впливають на період сигналу, тому до уваги слід брати лише частоту. Отже, складові заданого сигналу мають такі періоди: ; ; ; . Очевидно, що найменше спільне кратне становить (воно ділиться без остачі на решту періодів). Таким чином період заданого складеного сигналу становить:  Текст програми clear all //очистка пам’яті  clc //закриття всіх графічних вікон  close() //очистка екрану  A1=0,13; A2=27; A3=-2; A4=19; //амплітуда  w1=1; w2=2; w3=1/7; w4=9; //частота  phi1=%pi/5; phi2=0; phi3=%pi/2; phi4=%pi/3; //фаза  M=2^5; //кількість рівнів квантування  koef=2^0; //коефіцієнт кількості відліків  w_gr=max([w1,w2,w4,w3]); //гранична кругова частота  f_gr=w_gr/(2*%pi); //гранична лінійна частота  dt=1/(2*f_gr*koef); //дискрет часу за теоремою //Котельникова  T=14*%pi; //період з аналітичних розрахунків  t=0:dt:T-dt; //вектор часу для одного періоду  x=A1*cos(w1*t+phi1)-A2*sin(w2*t+phi2)+A3*sin(w3*t+phi3)-A4*cos(w4*t+phi4); //вектор дискретного сигналу  maxA=max(abs(x)) //максимальне значення амплітуди  minA=-maxA //мінімальне значення амплітуди  N=length(x); //довжина вектору сигналу  k=(maxA-minA)/(M-1); //квант амплітуди  K=minA:k:maxA; //вектор рівнів квантування  y=floor(x/k)*k; if modulo(M,2)==0 y=y+k/2; end; //округлення дискретного значення //сигналу до найближчого рівня //квантування, а отже, отримання //квантованого, тобто цифрового //сигналу  KK=ones(N,1)*K; plot(t,KK,'k--') ff=gca() ff.auto_ticks=["on","on","on"] xlabel('Час,с'); ylabel('Рівні квантування') //відображення рівнів квантування  plot2d(t,x,3) //графік дискретного сигналу  plot2d2(t,y,5) //графік квантованого сигналу  a=max(abs(y-x)) disp(a,"a=") //абсолютна похибка  b=(1/N)*(sum(y)-sum(x)) disp(b,"b=") //середня похибка  d=(1/N)*sum((y-x).^2) disp(d,"d=") //дисперсія   Оцінка похибки оцифровування Koef M A B D  1 8 5.306998 - 2.115*10-15 9.5563364   32 1.2212212 - 3.130*10-15 0.5099397   256 0.1480894 - 2.453*10-15 0.0077457  2 8 6.3897337 - 3.754 13.500203   32 1.4439402 0.0461124 0.7738661   256 0.1758867 0.0028029 0.0102776  4 8 6.7305864 0.0268367 14.521762   32 1.5210266 0.0969586 0.7917321   256 0.1853390 0.0007367 0.0115514  8 8 6.812571 - 0.1082102 15.414744   32 1.5389912 0.0824666 0.7921512   256 0.1871377 - 0.0051983 0.0112629   Графіки дискретного та квантованого сигналу для таких параметрів : М=32; koef=8 / Висновок: при виконанні лабораторної роботи було проведено оцифровування сигналу, заданого аналітичним виразом : . Для цього визначено крок дискретизації та період досліджуваного сигналу. Вони становлять, відповідно : ;  Здійснено оцінку точності оцифровування за критеріями абсолютної, середньої похибки та дисперсії, в залежності від частоти дискретизації та кількості рівнів квантування. З отриманих результатів видно, що перший параметр практично не впливає на точність оцифровування, тоді як зі збільшенням другого, точність оцифровування збільшується. Отже, для коректного представлення сигналу слід забезпечити частоту дискретизації не менше ніж , тобто 4 відліків в одиницю часу та максимально можливу кількість рівнів квантування.
Антиботан аватар за замовчуванням

04.06.2014 14:06-

Коментарі

Ви не можете залишити коментар. Для цього, будь ласка, увійдіть або зареєструйтесь.

Ділись своїми роботами та отримуй миттєві бонуси!

Маєш корисні навчальні матеріали, які припадають пилом на твоєму комп'ютері? Розрахункові, лабораторні, практичні чи контрольні роботи — завантажуй їх прямо зараз і одразу отримуй бали на свій рахунок! Заархівуй всі файли в один .zip (до 100 МБ) або завантажуй кожен файл окремо. Внесок у спільноту – це легкий спосіб допомогти іншим та отримати додаткові можливості на сайті. Твої старі роботи можуть приносити тобі нові нагороди!
Нічого не вибрано
0%

Оголошення від адміністратора

Антиботан аватар за замовчуванням

Подякувати Студентському архіву довільною сумою

Admin

26.02.2023 12:38

Дякуємо, що користуєтесь нашим архівом!