Розробка корпоративної комп’ютерної мережі організації

Інформація про навчальний заклад

ВУЗ:
Національний університет Львівська політехніка
Інститут:
ІКТА
Факультет:
Не вказано
Кафедра:
Захист інформації

Інформація про роботу

Рік:
2015
Тип роботи:
Курсова робота
Предмет:
Комп’ютерні мережі та комунікації
Група:
УІ 32

Частина тексту файла (без зображень, графіків і формул):

Зміст Технічне завдання…………………………………………………………………. 3  Вступ……………………………………………………………………………….. 4  Огляд основних технологій локальних та глобальних комп’ютерних мереж………………………………………………………………………....  5  Розробка загальної структури корпоративної комп’ютерної мережі…… 19  Розробка локальної мережі головного підрозділу організації…………… 21  Структуризація ІР-мережі головного підрозділу…………………………. 23  Розробка структурованої кабельної системи центрального будинку головного підрозділу……………………………………………………….. 25  Висновки…………………………………………………………………………… 26  Список використаної літератури…………………………………………………. 27  Додатки……………………………………………………………………………... 25   Технічне завдання Спроектувати корпоративну комп’ютерну мережу (ККМ) організації (навчального закладу, проектного інституту, банку, виробничого підприємства, заводу та інш.), яка має наступні властивості та характеристики: ККМ об’єднує географічно віддалені між собою мережі кампусів (центральна мережа та філії), кількість яких рівна 2 (для непарної передостанньої НЗК) і 3 (для парної передостанньої НЗК), а відстань між головною мережею та її найближчою філією становить значення d [км], де d- відстань в км, рівна 3-м останнім цифрам НЗК. ККМ повинна забезпечувати наступні послуги своїм корпоративним користувачам: 2.1 доступ корпоративних користувачів до: централізованої бази даних; корпоративних WWW-, FTP- та E_mail-серверів; можливість забезпечення обміну мультимедійними послугами: відеоконференцзв’язок; підключення корпоративних користувачів до мережі INTERNET з метою забезпечення її базових послуг; організація мережі доступу до корпоративної мережі для віддалених користувачів. Вибрати з наступних варіантів: комутована телефонна мережа загального користування (КТМЗК), INTERNET, ISDN, X.25, Frame Relay, та ін. Номер залікової книжки: 1309128 Вихідні дані для проектування, які визначаються на основі номера залікової книжки (НЗК) є наступними: число географічно віддалених між собою мереж кампусів (центральна мережа та філії) n = 3( згідно з предостанньою цифорою НЗК) ; відстань між головною мережею та її найближчою філією d = 128 км (рівна 3-м останнім цифрам НЗК); мережа кампусу об’єднує n = 4 будинки ( згідно останньої цифри НЗК з табл.), максимальна відстань між будинками m = 3 км (згідно передостанньої цифри НЗК з табл.). кількість маршрутизаторів в мережі кампусу p=4+3=7 кількість k вузлів в мережі центрального будинку кампусу головного підрозділу дорівнює добутку двох останніх цифр НЗК на 10 (kmin=100) k =2ост.цифри НЗК * 10 = 280; Вступ З глибокої давнини людство намагалося винайти засоби організації зв’язку на далеку відстань. До таких засобів можна віднести димовий телеграф, сигнальні вогні та ін. Безпосереднім провісником сучасних КМ були телеграфна та телефонна мережі. Виникнення мереж передавання даних і розподіленого їх опрацювання було результатом науково-технічної революції та розвитку мікроелектроніки. У 50-х роках ХХ ст, коли з’явились досить потужні ЕОМ, виникла потреба зв‘язувати їх з одним або багатьма терміналами для ефективнішого використання їхніх ресурсів. Було створено системи з розподілом часу роботи центрального процесора, де кожному терміналу по черзі виділявся квант часу. Канали з’язку в такій системі були досить дорогими, і термінали використовували їх неефективно. Тому згодом учені розробили спеціальні пристрої (мультиплексори та концентратори), які збирали трафік (інформацію) з розташованих поблизу терміналів для спрямування його до центрального процесора. Елементом такої системи був фронтальний процесор, який виконував функції організації зв’язку. Унаслідок еволюції мережа поступово набула сучасного вигляду. Тепер вона має багато центральних процесорів, терміналів та мереже зв’язку, яка складається з вузлів. Кожен вузол – це пристрій (комп’ютер, маршрутизатор) спеціалізований на виконання комунікаційних завдань. Для мередавання даних між вузлами використовують спеціальні магістральні канали. Замість терміналів часто стали використовувати персональкі комп’ютери. Поряд зі створенням глобальних мереж науковці намагалися організувати передавання даних у локальній зоні. У 80-х роках були спроби організувати зв’язок між комп’ютерами на рівні одного підприємства з використанням місцевої АТС. Однак справжній розвиток КМ розпочався завдяки появі дешевих мікропроцесорів та ПК. Масове використання мікропроцесорів у вузлах та пристроях, а також ПК спонукало організувати надійний зв’язок між ними для сумісного використання ресурсів та розв’язування задач. З появою ПК та КМ стало можливим наблизити місце опрацювання інформації до місця її виникнення і таким чином збільшити ефективність роботи інформаційної системи. 1. Огляд основних технологій локальних та глобальних комп’ютерних мереж передавання даних Корпоративні мережі (мережі масштабу підприємства) об’єднують велику кількість комп’ютерів на всіх територіях окремого підприємства. Вони можуть мати складні зв’язки і покривати місто, регіон чи навіть континент. Віддаль між окремими територіальними мережами можуть бути такими, що стає необхідним використання глобальних зв’язків. Корпоративні мережі забезпечують передавання даних між підрозділами одного відомства (корпорації, міністерства, організації, фірми і т.п.), розміщеними на певній території (будинок, місто, держава, континент). До їх складу можуть входити різні LAN і WAN та MAN, які використовують різнотипні лінії зв’язку, в т.ч. телефонні канали, радіо і супутниковий зв’язок. Корпоративні мережі часто використовують складне комунікаційне обладнання і апаратуру передавання даних. Глобальна мережа передавання даних (WAN) - це мережа з’єднаних між собою з допомогою спеціального телекомунікаційного обладнання ліній зв’язку та апаратури передачі даних абонентів, розташованих на великій території. Сучасні МПД можуть передавати такі види трафіка як: комп’ютерний, голос, телезображення і т.д. Абонентами глобальної мережі можуть бути як локальні комп’ютерні мережі так і окремі комп’ютери, різноманітні абонентські пункти з вбудованими процесорами та інше термінальне обладнання (наприклад, касові апарати, банкомати, вимірювальне обладнання і т.п.). WAN можуть охоплювати цілі держави та континенти. Локальна мережа передавання даних (LAN) – це мережа з’єднаних між собою комп’ютерів або інших термінальних пристроїв, розміщених на невеликій території. Локальні мережі забезпечують користувачам доступ до розподілених ресурсів, розміщених на інших комп'ютерах. Тапер дамо корортку характеристику локольним і глобальним мережам передавання даних. Призначення та особливості побудови глобальних мереж. Основне призначення WAN – це надання засобів комунікації великому числу різноманітних користувачів, тобто виконання транспортних функцій при передаванні мережевого трафіку. Сучасні глобальні мережі передавання даних надають користувачам такі види послуг: - передавання даних між локальними мережами та окремими комп’ютерами; - передавання мультимедійного трафіку, в т.ч. широкомовних аудіозапису та телевізійних зображень; - передавання гіпертекстової інформації; - передавання телефонного трафіку, телеграфних та факсимільних повідомлень; - забезпечення зв’язку центрального комп’ютера з неінтелектуальними терміналами, в т.ч. касовими апаратами та банкоматами; - замовлення та придбання квитків на засоби пасажирського транспорту (залізниця, авіаційні перевезення, морський транспорт і т.п.); - організація та проведення відеоконференцій; - організація ітерактивних розмов (в т.ч. ІР-телефонія); - пошук та надання інформації за індивідуальними замовленнями і т.п. Глобальна мережа являє собою транспортний засіб для передавання даних між абонентами. WAN будуються за певними мережевими технологіми - набором стандартних протоколів (правил) і використовують програмні і апаратні засоби, які реалізіють ці протоколи. Важливим показником мережі є її топологія - конфігурація зв’язків між абонентами і комутаційними вузлами мережі. Типова структура глобальної мережі приведена на рис.1. На схемі використані такі позначення: КОД (DTE) - кінцеве обладнання даних; АПД (DCE) - апаратура передавання даних; КВ - комутаційні вузли; МК - магістральні канали; АК - абонентські канали; M (R) - маршрутизатор; МХ - мультиплексор; АТС - автоматична телефонна станція; Т - термінальне обладнання (касові апарати, банкомати і т.п.). Комутаційні вузли забезпечують створення маршрутів для обміну інформацією між абонентами мережі. КВ являють собою комплекс взаємопов’язаних технічних засобів, які здійснюють приймання електричних сигналів із вхідних каналів, обробку отриманих повідомлень, розподілення та подальше передавання повідомлень у потрібний канал зв’язку. В глобальних мережах КВ можуть використовувати три способи комутації абонентів: комутацію каналів; комутацію пакетів; комутацію повідомлень. При одній і тій же структурі мережі різні способи комутації забезпечують для абонентів і мережі в цілому різні можливості та характеристики. Комутація каналів забезпечує створення неперервного фізичного каналу між абонентами шляхом з’єднання між собою окремих як абонентських, так і магістральних каналів. Розрізняють динамічну і постійну комутацію каналів. При комутації пакетів повідомлення розбивається на невеликі частини, які називаються пакетами. Кожний пакет містить службову інформацію та поле даних обмеженої довжини (наприклад, від 46 до 1500 байт). Комутатори приймають пакети від кінцевих вузлів і на основі аналізу адресної інформації передають їх один одному аж до вузла призначення. При комутації повідомлень повідомлення не розбивається на окремі частини, а посилається в мережу суцільним блоком довільної довжини. Цей спосіб комутації перевантажує мережу і зменшує її пропускну здатність. / Магістральні канали з’єднують між собою комутаційні вузли і переносять дані від багатьох абонентів. Вони є важливою складовою мережі, від якої в значній мірі залежить швидкість і надійність передавання даних. В сучасних мережах МК будують, як правило, на основі цифрових каналів зв’язку, або використовують виділені канали. Для під’єднання до комутаційних вузлів абонентського обладнання в глобальних мережах в переважній більшості також використовують виділені канали, але з меншою пропускною здатністю. Використовують також комутовані канали , в т.ч. телефонні лінії зв’язку, але якість транспортних послуг у цьому випадку зменшується. Глобальна мережа може містити різноманітне обладнання даних (DTE): комп’ютери, локальні мережі, маршрутизатори, мультиплексори і т.п. Для одночасного передавання комп’ютерного і голосового трафіку від АТС використовують мультиплексор МХ "голос-дані". МХ упаковує голосову інформацію у кадри або пакети і передає їх у мережу. При цьому голосовий трафік має вищий приорітет, чим комп’ютерні дані. Адресат також повинен мати МХ, який розділяє голосовий і комп’ютерний трафіки та направляє голосову інформацію в АТС, а комп’ютерні дані – в локальну мережу. Кінцеве DTE під’єднується до мережі з допомогою АПД (DCE). Глобальна мережа характеризується інтерфейсом "користувач-мережа" UNI. Цей інтерфейс строго стандартизований і забезпечує під’єднання користувачів до мережі з допомогою комунікаційного обладнання будь-якого виробника. Інтерфейс "мережа-мережа" NNI для під’єднання комутаційних вузлів може бути не стандартизованим і дозволяє власнику мережі свободу дій. Великі відстані і ненадійні ЛЗ обумовили необхідність побудови ГМПД за мережевими технологіями, які вимагають використання спеціальної АПД та складних методів передачі даних, різноманітних методів модуляції електричних сигналів, їх синхронізації та багатократного відновлення якості. Методи передавання даних, які застосовують в ГМ, передбачають складний багатократний контроль достовірності передачі кадрів і повторну передачу спотворенних кадрів. Особливості побудови локальних мереж Локальна мережа передавання даних (LAN)- це мережа з’єднаних між собою з допомогою спеціального технічного і програмне забезпечення комп’ютерів, розташованих на невеликій території. Метою створення LAN є доступ до розміщених на інших комп’ютерах мережі розподілених ресурсів: інформаційних, програмних та технічних. LAN будується за певними мережевими технологіями – наборами стандартних протоколів (правил) і використовують конкретні програмні і апаратні засоби, які реалізують ці протоколи. Основними компонентами локальної мережі є комп’ютери, мережеві адаптери та фізичне середовище, яке з’єднує комп’ютери між собою. В локальних мережах використовуються комп’ютери двох типів: 1. Рядовий комп’ютер (клієнт) – це робоча станція, яка через мережу отримує доступ до розподілених ресурсів і призначена для розв’язування прикладних задач користувача. 2. Центральний комп’ютер (сервер) – це потужний комп’ютер, який містить розподілені ресурси, доступні до інших комп’ютерів (клієнтів). Комп’ютери під’єднуються до мережі за допомогою спеціальних апаратних засобів, які називаються мережевими адаптерами (мережевими картами). Мережеві адаптери разом із спеціальними програмами – драйверами перетворюють повідомлення комп’ютерів у послідовність електричних сигналів, які поступають у фізичне середовище (кабелі), що з’єднують комп’ютери між собою. Фізичне середовище призначене для передачі електричних сигналів між комп’ютерами, розміщеними на певній віддалі один від одного. Для зв’язку комп’ютерів між собою в локальних мережах найчастіше використовують кабелі на основі скручених пар, волоконно-оптичні та коаксиальні кабелі. Важливою характеристикою LAN є її топологія. Розрізняють фізичну і логічну топологію (фізичні і логічні зв’язки) мережі. Фізична топологія – це конфігурація електричних зв’язків, утворених окремими сегментами фізичного середовища. Логічна топологія - це конфігурація інформаційних потоків в мережі. Найбільш поширеними фізичними топологіями локальних мереж є "загальна шина", "зірка", "ієрархічна зірка" та "кільце". При топології "загальна шина" пакет даних, який передається у фізичне середовище будь-яким комп’ютером, одночасно поступає на входи мережевих адаптерів всіх комп’ютерів, під’єднаних до цього середовища. Вводить цей пакет у свою пам’ять тільки той комп’ютер, який розпізнав у службовому полі пакету свою адресу. Цей тип топології характерний специфікацій технології Ethernet, які описують побудову мережі на основі коаксіальних кабелів. При кільцевій топології дані передаються послідовно по кільцю від одного комп’ютера до іншого, а у свою пам’ять їх вводить той комп’ютер, якому вони призначені. По кільцевій топології будуються мережі Token Ring тa FDDI. Топології типу "зірка " та "ієрархічна зірка "будуються за допомогою спеціальної комунікаційної апаратури, найчастіше - концентраторів і комутаторів. Цей тип топології є найбільш характерним для сімейства технологій Ethernet. Комунікаційні пристрої локальних мереж відповідають стандартам конкретних базових технологій і підтримують передавання даних по конкретному фізичному середовищі. Вони призначені для здійснення комутації між вузлами мережі, відновлення якості електричних сигналів, збільшення діаметру мережі, фізичної та логічної структуризації локальних мереж. Фізичну структуризацію здійснюють з метою збільшення її довжини та числа комп’ютерів за допомогою повторювачів і концентраторів. Фізична структуризація дозволяє не тільки збільшити число PC і довжину мережі, але й підвищує її надійність. Логічну структуризацію виконують з метою підвищення продуктивності і безпеки даних шляхом розбиття єдиного для всієї мережі фізичного середовища на окремі сегменти за допомогою мостів, комутаторів і маршрутизаторів. Логічна структуризація дозволяє локалізувати трафіки окремих сегментів і забезпечує одночасний обмін даними між комп’ютерами в межах кожного сегменту. Логічна структуризація не тільки підвищує ефективність мережі, але і зменшує можливість несанкціонованого доступу до даних. До основних апаратних комунікаційних засобів локальних мереж відносяться мережеві адаптери (карти), повторювачі, концентратори, мости, комутатори, шлюзи і маршрутизатори. Мережеві адаптери призначені для під’єднання комп’ютерів до кабельної системи мережі і підтримують протоколи канального та фізичного рівня певної мережевої технології. Кожний мережевий адаптер має свою унікальну МАС-адресу, яка автоматично присвоюється комп’ютеру, який використовує цей адаптер. Повторювач – це комунікаційний пристрій, який використовується для фізичного з’єднання двох сегментів фізичного середовища і відновлення якості (характеристик) електричних сигналів. Повторювач дозволяє збільшити діаметр мережі та виконати її фізичну структуризацію. Мережева технологія обмежує довжину сегментів, побудованих на конкретному фізичному середовищі. Використання повторювача дозволяє подвоїти довжину мережі, а також збільшити число під'єднаних до неї комп'ютерів Концентратор (hub) –це багатопортовий повторювач призначений для фізичного з’єднання декількох сегментів мережі. З допомогою концентратора будують фізичну топологію типу "зірка". Інколи хабом називають тільки центральні концентратори, розміщені на верхньому ієрархічному рівні, а концентратори нижнього рівня називають багатопортовими повторювачами. Фізична структуризація мережі з допомогою концентраторів дозволяє змінити структуру мережі, її топологію, збільшити діаметр та число під’єднаних до мережі комп’ютерів, покращити надійність передавання даних. Сучасні концентратори можуть відключати від мережі порти з некоректно працюючим комп’ютером. Міст – це комунікаційний пристрій з вбудованим процесором, призначений для ізоляції трафіка однієї мережі (сегменту) від іншої на основі аналізу апаратної адреси отримувача пакетів інформації. Мережевий трафік – це інформаційний потік, тобто об’єм інформації, що передається по мережі одночасно і характеризує її завантаженість. Мережевий трафік складається з потоку пакетів, кожний з яких містить поле службової інформації та поле даних. Поле службової інформації обов’язково містить апаратні адреси отримувача і відправника пакету. Адресна таблиця моста містить інформацію про закріплені за сегментами мережі комп’ютери. Міст пропускає в інший сегмент пакет, який поступив на його вхід тільки у тому випадку, якщо там знаходиться отримувач пакетів. Використання моста дозволило розбити мережу на два сегменти і локалізувати таким чином трафіки комп’ютерів, розміщених в різних сегментах. Це забезпечує підвищення продуктивності мережі та надійності передавання даних. Комутатор (switch) – це високошвидкісний багатопортовий мультипроцесорний міст. Кожний порт комутатора керується окремим мікропроцесором, має свою буферну пам’ять та формує власну адресну таблицю. Пакет, який поступає в один з портів комутатора направляється тільки в той вихідний порт, в якому знаходиться адресат. Якщо вихідний порт зайнятий передавання іншої інформації, то пакет записується у буферну пам’ять та ставиться у чергу на вивід. Сучасні комутатори виконують цілий ряд додаткових функцій, направлених на підвищення продуктивності та надійності роботи мережі і захисту інформації. Комутатори 3-го рівня виконують протоколи мережевого рівня стеку комунікаційних протоколів і тому використовуються для ізоляції мережевого трафіку на основі аналізу ІР-адрес пакетів. / Шлюз (gateway)– це комунікаційний пристрій, який об’єднує мережі, побудовані за різними технологіями і з різними типами протоколів. Маршрутизатор (router)- це багатофункціональний комунікаційний пристрій, який підтримує протоколи мережевого рівня і призначений для об’єднання як локальних, так і глобальних мереж, побудованих за різними мережевими технологіями. В локальних мережах маршрутизатори використовують для їх структуризації шляхом поділу мереж, які використовують стек комунікаційних протоколів, на підмережі. Приклад структури локальної мережі, побудованої за різними базовими технологіями з використанням концентраторів, комутаторів та маршрутизатора, приведений на рис. 2. Особливості базових технологій локальних мереж Ethernet В даний час з вiдносно невеликих комп’ютерних мереж зi швидкiстю передачi до 10 Мбiт/с найбiльш поширеною є Ethernet. Ця мережа призначена для об’єднання робочих станцiй рiзних установ (банкiв, офiсiв i т.п.) в локальну мережу. Мережа характеризується низькою вартiстю, простотою наладки та експлуатацiї. Для даного типу мереж iснує достатньо великий набiр програмних та апаратних засобiв. В якостi фiзичного середовища для даної мережi стандартом IЕЕЕ 802.3 визначенi два типи коаксiального кабеля, вита пара провiдникiв та оптоволоконний кабель. Вiдповiдно, розрiзняють чотири типи специфiкацiї середовища передачi: 10BASE5, 10BASE2, 10BASE-T i 10BASE-F. Однiєю з перших появилась специфiкацiя 10BASE5, яка визначає використання товстого коаксiального кабеля з дiаметром центрального мiдного провiдника 2,17 мм. Специфiкацiя 10BASE2 визначає використання тонкого коаксiального кабеля з дiаметром центрального провiдника 0,89 мм. Фiзичнi та електричнi характеристики кабеля впливають на такi параметри мережi, як далекiсть передачi по кабелю без повторювачiв, максимальне число станцiй, що пiдключенi до одного сегмента та iн. Щоб розрiзнити мережi на базi кабелiв цих типiв, в першому випадку говорять про мережу товста Ethernet, а в другому – тонка Ethernet. В якостi магiстрального кабеля в системi 10BASE5 використовується кабель RG-11. Для системи 10BASE2 найчастiше використовують кабель RG-58A/U. Кабель RG-11 характеризується бiльшою надiйнiстю та завадостiйкiстю, однак його вартiсть суттєво вища вартостi кабеля RG-58A/U. Максимальна довжина сегмента, тобто участка мережi без додаткових пiдсилювачiв (повторювачiв), для системи 10BASE5 складає 500 метрiв. До сегмента допускається пiдключення до 100 станцiй. На кiнцях сегмента розмiщуються термiнатори, що попереджають виникнення ефекту вiдбитої хвилi на кiнцi коаксiального кабеля. Термiнатор має такий же хвилевий опiр, як i коаксiальний кабель – 50 Ом. Для пiдключення станцiй до середовища передачi використовується спецiальний прийомопередавач (трансiвер) та адаптер. Довжина iнтерфейсного кабеля мiж адаптером i трансiвером може досягати 50 метрiв. Це дозволяє в достатньо великих межах мiняти мiсцеположення станцiй, не чiпаючи основний кабель, який прокладають вiд одного примiщення до iншого, як правило, в спецiальних монтажних коробах. Для мереж системи 10BASE2 максимальна довжина сегмента складає 185 м, хоча деякi типи мережевих адаптерiв допускають збiльшення цього параметра до 200, а деякi, для адаптерiв 3СОМ – навiть до 300 метрiв. Максимальне число станцiй, що пiдключаються до сегмента, повинно бути не бiльше 30. Пiдключення станцiї здiйснюється за допомогою Т- i BNC-конекторiв з хвилевим опором 50 Ом. Т-конектор являє собою невеликий трiйник, який однiєю стороною пiдключається до мережевого адаптера, а двома iншими через BNC-конектори – до коаксiального кабеля. Термiнатор використовується для поглинання сигналiв на кiнцях коаксiального кабеля та попередження ефекту вiдбитої хвилi. Один з термiнаторiв (але не обидва) повинен бути заземленим. Iнакше мережа буде працювати нестабiльно. В загальному, за рахунок використання вiдносно дешевого кабеля та вiдсутностi трансiверiв, вартiсть мережi Ethernet 10BASE2 є нижчою в порiвняннi з мережею Ethernet 10BASE5, у зв’язку з чим за нею закрiпилась назва CheapNet (дешева мережа). Використовуючи спецiальнi повторювачi (репiтери), можна об’єднати мiж собою до п’яти сегментiв мережi. В цьому випадку максимальна довжина мережi Ethernet 10BASE5 складає 2,5 км, а максимальна довжина мережi Ethernet 10BASE2 – 1 км. Репiтери можуть розташовуватись на довiльному участку сегмента, утворюючи мережi рiзної кофiгурацiї – лiнiйної та розгалуженої. Бiльше того, повторювачi дозволяють об’єднати мережi з товстим i тонким кабелем. В даний час появились багатопортовi повторювачi, якi дозволяють об’єднати декiлька сегментiв у виглядi зiркоподiбної структури. Таким чином, за допомогою повторювачiв може бути реалiзована топологiя локальної комп’ютерної мережi, близька до оптимальної. Вдосконалення мережевих засобiв, i в першу чергу адаптерiв, дозволило широко використати витi пари провiдникiв в якостi середовища передачi локальних комп’ютерних мереж. Так, в рамках мережi Ethernet розроблена специфiкацiя 10BASE-Т, яка визначає використання в якостi середовища передачi витої пари провiдникiв категорiї 3 i довжиною кабеля до 100 метрiв. Основним структурним елементом мережi є концентратор (Hub), до якого радiальним чином пiдключаються робочi станцiї. Використовуючи декiлька концентраторiв, можна побудувати мережу достатньо складної кофiгурацiї. Дальше пiдвищення ефективностi мереж Ethernet пов’язане з використанням комутуючих концентраторiв (switching hub), якi на вiдмiну вiд звичайних (ретранслюючих) концентраторiв дозволяють розглядати сегменти мережi в якостi окремих мереж, зв’язаних разом через iнтерфейс комутацiї пакетiв. Комутуючий концентратор обладнаний двома буферами на кожний комутований порт: для пакетiв, що приймаються, i пакетiв, що передаються. Завдяки цьому комутуючий концентратор працює аналогiчно вузлу комутацiї пакетiв – приймає i передає пакети одночасно мiж рiзними парами абонентiв. Це, поряд iз збiльшенням продуктивностi, дозволяє уникнути зiткнень пакетiв (колiзiй). Комп’ютернi мережi, що використовують подiбну технологiю, отримали назву Switch Ethernet. Також новим технологiчним напрямком розвитку мереж Ethernet є оптоволоконна мережа Ethernet 10BASE-F зi швидкiстю передачi 10 Мбiт/с. В якостi середовища передачi використовується 50- та 100-мiкронний оптоволоконний кабель. Мережа характеризується зiркоподiбною топологiєю, яка пiдтримується за допомогою оптоволоконних концентраторiв. Максимальна довжина одного променя (сегмента) складає 2100 метрiв. FastEthernet - специфікація IEЕЕ 802.3 u офіційно прийнята 26 жовтня 1995 визначає стандарт протоколу канального рівня для мереж, які будуються на мідному або волоконно-оптичному кабелі, із швидкістю 100Мб / с. Нова специфікація є спадкоємицею стандарту Ethernet IEЕЕ 802.3, вона використовує такий самий формат кадру, механізм доступу до середовища - CSMA/CD і топологію зірка. Еволюція торкнулася кількох елементів конфігурації засобів фізичного рівня, що дозволило збільшити пропускну здатність, включаючи типи застосовуваного кабелю, довжину сегментів і кількість концентраторів. Найпоширенішим середовищем передачі є неекранована вита пара. Довжина сегментів мережі 100Base-TX на кабелі UTP категорії 5 з хвильовим опором 100 Ом не повинна перевищувати 100 м. Це обмеження зумовлене допустимим часом затримки поширення сигналу в передавальному середовищ і є досить жорстким. З метою зниження впливу перешкод використовується біполярна передача: по одному з проводів передається позитивний, по другому — негативний потенціал. На відміну від стандарту ANSI TP-PMD у 100Base-TX використовується така ж розпайка, як і в 10Base-T. Це дозволяє заміняти інтерфейсні плати без перепаювання або заміни кабелю. Стандартом 100Base-TX передбачене використання екранованої витої пари з хвильовим опором 150 Ом і стандартних дев'ятиштиркових конекторів D-типу. Специфікацією 100Base-T4 також визначена довжина кабелю: до 100 м. При цьому допускається використання кабелів UTP категорій 3, 4 і 5, проте рекомендується використання кабелю категорії 5. З чотирьох пар, що використовуються, дві призначені для односпрямованої передачі, а дві інші — для двоспрямованої передачі. Пари позначаються таким чином: • ТХ — для односпрямованої передачі даних; RX — для односпрямованого прийому; • ВІ — інші дві пари для обміну даними в обох напрямках. З метою зниження рівня перешкод при підключенні кабелю 100Base-T4 необхідно дотримуватися правила перехресного з'єднання пар провідників. Обидві специфікації обмежують діаметр мережі (максимальна відстань між будь-якими двома абонентами) величиною 200 м. Специфікація на оптоволоконний інтерфейс 100Base-FX визначає довжину сегмента до 100 м, проте допустимий діаметр мережі дорівнює 412 м. За специфікацією 100Base-FX для кожного з'єднання необхідний двожильний багатомодовий оптоволоконний кабель, сигнал у якому передається одним волокном, а приймається другим. Ці волокна мають перехресне з'єднання і тому позначаються як RX і ТХ. Існує багато видів волоконно-оптичних кабелів, від простих двоволоконних до спеціальних багатоволоконних. Найчастіше в сегментах 100Base-FX використовується багатомодовий кабель MMF з оптоволокном товщиною 62,5 мікрона і зовнішньою ізоляцією завтовшки 125 мікрон і позначається як 62,5/125. Token Ring З кiльцевих мереж з маркерним методом доступу найпоширенiшою є мережа Token Ring. Ця мережа розроблена фiрмою IВМ. Популярнiсть Token Ring, мабуть, така ж, якi Ethernet. Фiрма IВМ провела велику роботу по стандартизацiї мережi Token Ring, в результатi чого вона була прийнята спочатку в якостi стандарта IЕЕЕ 802.5, а пiзнiше й мiжнародного стандарта ISO/DIS 8802/5. Стандартом визначена швидкiсть передачi 4 Мбiт/с. В даний час використовуються мережi зi швидкiстю 16 Мбiт/с. Мережа FDDI Свою назву мережі FDDI одержали від Fiber distributed data interface (Оптоволоконный інтерфейс розподілених даних). З метою широкого впровадження високошвидкісних каналів передачі даних у 1985 р. комітетом ХЗТ9.5 Американського інституту національних стандартів (ANSI) був розроблений стандарт на оптоволоконний інтерфейс розподілених даних. Хоча цей стандарт офіційно називається стандартом ANSI ХЗТ9.5, за ним закріпилася назва FDDI. Згодом стандарт FDDI був прийнятий як міжнародний стандарт ISO 9314.3 метою підвищення ефективності передачі цифрових, звукових і відео даних реального часу в 1986 р. розробили стандарт FDDI II. Слід підкреслити, що основна увага при розробленні стандарту приділялася питанням підвищення продуктивності і надійності мережі. Перше завдання вирішувалося за рахунок використання високошвидкісних (100 Мбіт/с) оптоволоконних каналів передачі даних і удосконалених протоколів доступу до передавального середовища. Так, на відміну від Ethernet, тут застосовується детермінований метод доступу, який виключає можливість конфліктів. У свою чергу, мережі FDDI застосовується більш ефективний, порівняно із стандартом IEEE 802.5, метод передачі даних, званий раннім звільненням маркера — ETR (Early token Release). У мережі Token Ring маркер передається після підтвердження одержання даних, а в мережі FDDI станція, що передала дані, звільняє маркер, не чекаючи повернення свого кадру даних. Маркер надходить до наступної станції, дозволяючи їй передавати інформацію. Тобто у мережі FDDI одночасно може циркулювати декілька пакетів даних, переданих різними станціями. Висока надійність мережі забезпечується здатністю мережі до динамічної реконфігурації своєї структури за рахунок використання подвійного кільця передачі даних і спеціальних процедур керування конфігурацією. Конфігурація змінюється шляхом обходження або ізоляції несправної ділянки мережі. Для реалізації цих можливостей визначається два типи станцій (адаптерів): • одинарна станція (Single station) — станція з одним портом вводу-виводу для підключення оптоволоконного кабелю, за допомогою якого може бути утворене тільки одне кільце; • подвійна станція (Dual station) — станція з двома портами вводу-виводу оптоволоконного каналу зв'язку, за допомогою яких утворюється два кільцевих тракти передачі сигналів. Як правило, подвійні станції використовуються для утворення магістрального тракту передачі даних, а одинарні — для радіального підключення абонентських систем (комп'ютерів). У FDDI широко використовуються концентратори, які, як і станції, можуть бути з одним або з двома портами вводу-виводу для підключення до магістрального каналу. Подвійні концентратори використовуються на магістральній ділянці мережі, а одинарні концентратори підтримують деревоподібну структуру мережі. Підключення абонентських систем до концентраторів може здійснюватись як за допомогою оптоволоконних каналів, так і за допомогою витих пар провідників. У першому випадку проміжною ланкою виступають одинарні станції. В другому випадку — спеціальний адаптер, подібний до адаптера мережі стандарту IEEE 802.5. Широкий набір пристроїв різних типів дозволяє підтримувати мережеві структури з різною топологією, від простої кільцевої до складної деревовидно-кільцевої. Як і більшість стандартів на локальні комп'ютерні мережі, FDDI визначає два нижніх рівні еталонної моделі OSI. На підрівні LLC FDDI використовує стандарт ІЕЕЕ-802.2, що забезпечує сумісність мережі цього типу з іншими локальними мережами. На підрівні МАС FDDI можна розглядати як подальший розвиток стандарту ІЕЕЕ-802.5 на шляху підвищення ефективності використання передавального середовища і розширення функціональних можливостей передачі інформації. При цьому факультативні можливості стандарту ІЕЕЕ-802.5 з організації багаторівневої пріоритетної схеми керування доступом і режим раннього звільнення маркера переведені до розряду обов'язкових. Стандартом визначено два режими передачі даних: синхронний і асинхронний. У синхронному режимі станція при кожному надходженні маркера може передавати дані упродовж певного часу, незалежно від часу появи маркера. Цей режим звичайно використовується для додатків, чутливих до часових затримок, наприклад у системах оперативного керування та ін. В асинхронному режимі тривалість передачі інформації пов'язана з приходом маркера і не може продовжуватися довше визначеного часу. Якщо до зазначеного моменту часу маркер не з'явився, передача асинхронних даних взагалі не провадиться. В асинхронному режимі додатково встановлюється декілька (до семи) рівнів пріоритету, для кожного з яких установлюється свій граничний час передачі інформації. Технологія АТМ ATM або Asynchronous Transfer Mode (Режим асинхронної передачі) – це технологія комутації пакетів, що формує ядро Broadband ISDN або Broadband Integrated Services Digital Network (Багатофункціональна цифрова мережа) і забезпечує передачу цифрових, голосових і мультимедійних даних одночасно через одні і ті ж лінії. Спочатку швидкість передачі була визначена 155 Мбіт/с, потім 662 Мбіт/с і планується до 2.488 Гбіт/c. ATM використовується як в локальних, так і глобальних мережах, успішно застосовується для зв'язку локальних мереж, сильно віддалених одна від одної. Загальні характеристики ATM: Лінії зв'язку – оптичні, локальні і довгі. Довгі лінії можуть бути виділеними та коммутаційними. Забезпечення паралельної передачі. Кожний вузол може мати виділене з'єднання з будь-яким іншим вузлом. Робота завжди на максимальній швидкості. Використання пакетів фіксованої довжини - пакети по 53 байти. Корекція помилок і маршрутизації на апаратному рівні (частково завдяки фіксованому розміру пакету). Одночасна передача даних, відеоінформації та голосу. Фіксований розмір пакету забезпечує рівномірний голосовий потік. Легкість балансування завантаження. Комутація пакетів дозволяє при необхідності підвищення пропускної здатності встановити множину віртуальних ланцюгів між передавачем та приймачем. Типи фізичних інтерфейсів ATM: SONET або Synchronous Optical Network (Стандарт ANSI для оптоволоконних мереж), ОС-3, STS-3 або STM-1 в термінології CCITT (Consultative Committee on International Telephone and Telegraph – Міжнародний комітет стандартизації телефонного і телеграфного зв'язку), 155.52 Мбіт/с DS3, 44.736 Мбіт/с 100 Мбіт/с з кодуванням 4В/5В 155 Мбіт/c з кодуванням 8В/10В Всі ці інтерфейси використовують оптоволокно, хоча розробляються варіанти стандартів на витковій парі UTP-3 або Unshielded Twisted Pair (Неекранована виткова пара проводів). 2. Розроблення загальної структури корпоративної комп’ютерної мережі. Корпоративна комп’ютерна мережа складається з головного підрозділу, до складу якого входять 4 будинки, та двох філій (див. Додаток 1). Схематичне зображення розташування будинків та кількість хостів у кожному подано на рис.3. / Рис.3 Схематичне розташування будинків корпоративної локальної мережі. Мінімальна відстань між головними будинками та філіями 128 км. Для зв’язку між ними використано технологію АТМ (Asynchronous Transfer Mode – асинхронний режим передачі), яка призначена для передавання гібридного трафіку по високоякісних лініях зв’язку із швидкістю від 1,54 до 622 Мбіт/с. З метою забезпечення належного рівня захищеності та доступу користувачів до розподілених ресурсів ККМ використано технологію Intranet VPN. Вона здатна забезпечити підключення типу мережа-мережа, а використання стеку протоколів IPsec зебезпечує захищеність даних, що передаються по відкритим каналам зв'язку (Internet). Структура ККМ подана в додатку 1. Переваги використання Intranet VPN: відсутність плати за кабельні лінії, що з'єднюють розподілені мережі (плата тільки за послуги Internet); високий рівень захищеності даних (використовуються криптографічні засоби: аутентифікація, шифрування, захист від повторів та зміни повідомлень, що передаються по логічній мережі); високі швидкості передавання даних (використовується мережа Internet); відсутня необхідність у специфічних пристроях спряження (як плата ІSDN), підтримка технологій VPN більшістю сучасних роутерів; передачу трафіка будь-якого типу (комп’ютерного, мультимедійного); можливість використання наявної інфраструктури ліній зв’язку і фізичних протоколів. IPsec ( IP Security) – набір протоколів для забезпечення захисту даних, що передаються по між мережевому протоколу IP, він дозволяє здійснювати підтвердження автентичності і/або шифрування IP-пакетів. IPsec також включає в себе протоколи дляя захищеного обміну ключами в мережі інтернет. Протоколи IPsec працюють на мережевому рівні, це робить його більш гнучним за протоколи SSL, TLS (працюють на транспортному рівні), адже він може використовуватись для захисту будь-яких протоколів, що базуються на TCP та UDP. Протоколи захисту потоку, що передається, можуть працювати в двох режимах – в транспортному та в режимі тунелювання. При роботі в транспортному режими IPsec працює тільки з інформацією транспортного рівня, а в режимі тунелювання – цілими IP-пакетами. В тунельному режимі шифрується цілий ІР-пакет. Для передачі його інкапсулюють у інший ІР-пакеь, по суті це ІР-тунель. Тунельний режим може використовуватись для підлючення віддалених користувачів до віртуальної приватної мережі або для організації безпечної передачі даних через відкриті канали зв'язку (наприклад, Інтернет) між шлюзами для об'єднання різних частин віртуальної приватної мережі. У одній із філій розташований локальний сервер, що забезпечує доступ усіх користувачів мережі до централізованої бази даних організації, а також до корпоративного файлообмінника. Також забезпечено доступ до мережі Internet. Для побудови корпоративної мережі використано 7 маршрутизаторів, 5 з яких розташовані в будинках головного
Антиботан аватар за замовчуванням

21.10.2017 13:10-

Коментарі

Ви не можете залишити коментар. Для цього, будь ласка, увійдіть або зареєструйтесь.

Ділись своїми роботами та отримуй миттєві бонуси!

Маєш корисні навчальні матеріали, які припадають пилом на твоєму комп'ютері? Розрахункові, лабораторні, практичні чи контрольні роботи — завантажуй їх прямо зараз і одразу отримуй бали на свій рахунок! Заархівуй всі файли в один .zip (до 100 МБ) або завантажуй кожен файл окремо. Внесок у спільноту – це легкий спосіб допомогти іншим та отримати додаткові можливості на сайті. Твої старі роботи можуть приносити тобі нові нагороди!
Нічого не вибрано
0%

Оголошення від адміністратора

Антиботан аватар за замовчуванням

Подякувати Студентському архіву довільною сумою

Admin

26.02.2023 12:38

Дякуємо, що користуєтесь нашим архівом!